Lithologic Reservoirs ›› 2022, Vol. 34 ›› Issue (1): 34-42.doi: 10.12108/yxyqc.20220104

• PETROLEUM GEOLOGY • Previous Articles     Next Articles

Quantitative characterization of point bar sand bodies in meandering river under different curvatures: A case study of modern deposition of Baihe river in the source area of Yellow River

YI Zhifeng1,2, ZHANG Shangfeng1,2, WANG Yaning1,2, XU Enze1, ZHAO Shaohua1, WANG Yuyao1   

  1. 1. School of Geoscience, Yangtze University, Wuhan 430000, China;
    2. Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Jingzhou 434000, Hubei, China
  • Received:2021-08-29 Revised:2021-10-09 Online:2022-01-01 Published:2022-01-21

Abstract: A correct understanding of the shape and scale of meandering river point bar sand bodies is of great significance to the understanding of interwell sand body connectivity,fluid migration path analysis and efficient and accurate tapping of remaining oil. Taking the modern Baihe river in the Yellow River source area as an example, ArcGIS software was used to vectorize the 31 typical point bar sand bodies in the Baihe satellite image,and the basic measurement data table of the parameters of point bar sand body scale was established. The typical point bar meandering sections were selected for characterization through slope division,and the quantitative relationship between the scale of the point bar sand bodies and the width of the river channel was discussed on the basis of curvature division. The results show that the larger the slope,the smaller the river width and the smaller the curvature. There is a positive correlation among point bar length,point bar width and river channel width,and the correlation is different under different curvatures. When the curvature k is less than 2,the correlation coefficient between point bar length and river channel width is 0.790,the correlation coefficient between point bar width and point par length is 0.812,and the correlation coefficient between point bar width and river channel width is 0.414. When k is 2.0-2.5,the correlation coefficient between point bar length and river channel width is 0.709,the correlation coefficient between point bar width and point bar length is 0.883,and the correlation coefficient between point bar width and river channel width is 0.841. The research results can be used for reference to the quantitative characterization of meandering river reservoirs.

Key words: meandering river, point bar, quantitative characterization, curvature, ArcGIS, slope, modern deposition

CLC Number: 

  • TE121.2+3
[1] 薛培华.河流点坝相储层模式概论.北京:石油工业出版社, 1991:1-20. XUE P H. An introduction to reservoir models of point bar facies. Beijing:Petroleum Industry Press, 1991:1-20.
[2] 贾爱林. 中国储层地质模型20年. 石油学报, 2011, 32(1):181-188. JIA A L. Research achievements on reservoir geological modeling of China in the past two decades.Acta Petrolei Sinica, 2011, 32(1):181-188.
[3] 张建兴, 林承焰, 张宪国, 等.基于储层构型与油藏数值模拟的点坝储层剩余油分布研究.岩性油气藏, 2017, 29(4):146-153. ZHANG J X, LIN C Y, ZHANG X G, et al. Remaining oil distribution of point bar reservoir based on reservoir architecture and reservoir numerical simulation.Lithologic Reservoirs, 2017, 29(4):146-153.
[4] SCHUMM S A. Sinuosity of alluvial rivers on the Great Plains. Geological Society of America Bulletin, 1963, 74(9):1089-1100.
[5] LEOPOLD L. Fluvial processes in geomorphology. Dover:Dover Publications, 1964:15-27.
[6] SCHUMM S A. Fluvial paleochannels//RIGBY J K, HAMBLIN W K. Recognition of ancient sedimentary environment. SEPM Special Publications 16, 1972:98-107.
[7] LORENZ J C, HEINZE D M, CLARK J A, et al. Determination of widths of meander-belt sandstone reservoirs from vertical downhole data, Mesaverde Group, Piceance Creek Basin, Colorado.AAPG Bulletin, 1985, 69(5):710-721.
[8] NICOLL T J, HICKIN E J. Planform geometry and channel migration of confined meandering rivers on the Canadian prairies. Geomorphology, 2010, 116:37-47.
[9] 岳大力, 吴胜和, 刘建民.曲流河点坝地下储层构型精细解剖方法.石油学报, 2007, 28(4):99-103. YUE D L, WU S H, LIU J M. An accurate method for anatomizing architecture of subsurface reservoir in point bar of meandering river. Acta Petrolei Sinica, 2007, 28(4):99-103.
[10] 李宇鹏, 吴胜和, 岳大力.现代曲流河道宽度与点坝长度的定量关系.大庆石油地质与开发, 2008, 27(6):19-22. LI Y P, WU S H, YUE D L. Quantitative relation of the channel width and point-bar length of modern meandering river. Petroleum Geology & Oilfield Development in Daqing, 2008, 27(6):19-22.
[11] 石书缘, 胡素云, 冯文杰, 等. 基于Google Earth软件建立曲流河地质知识库.沉积学报, 2012, 30(5):869-878. SHI S Y, HU S Y, FENG W J, et al. Building geological knowledge database based on Google Earth software. Acta Sedimentologica Sinica, 2012, 30(5):869-878.
[12] 范广娟, 李新宇, 赵跃军, 等.基于卫星图像的点坝参数定量关系研究与应用.数学的实践与认识, 2014, 44(3):62-67. FAN G J, LI X Y, ZHAO Y J, et al. Point bar parameters' quantitative relationship research and application based on satellite Images. Mathematics in Practice and Theory, 2014, 44(3):62-67.
[13] 王海峰, 范廷恩, 宋来明, 等.高弯度曲流河砂体规模定量表征研究.沉积学报, 2017, 35(2):279-289. WANG H F, FAN T E, SONG L M, et al. Quantitative characterization study on sand body scale in high sinuosity meandering river. Acta Sedimentologica Sinica, 2017, 35(2):279-289.
[14] LEEDER M R. Fluviatile fining-upwards cycles and the magnitude of palaeochannels. Geological Magazine, 1973, 110(3):265-276.
[15] 刘振坤, 吴胜和, 王晖.现代曲流河点坝定量模式探讨.地质与资源, 2012, 21(3):337-340. LIU Z K, WU S H, WANG H. Study on the quantitative model for point bar of modern meandering river. Geology and Resources, 2012, 21(3):337-340.
[16] 乔辉, 王志章, 李莉, 等.基于卫星影像建立曲流河地质知识库及应用.现代地质, 2015, 29(6):1444-1453. QIAO H, WANG Z Z, LI L, et al. Application of geological knowledge database of modern meandering river based on satellite image. Geoscience, 2015, 29(6):1444-1453.
[17] 王冬冬, 宋亚开, 郭宇鹏.基于Google Earth软件对曲流河点坝的研究.中国锰业, 2017, 35(2):141-143. WANG D D, SONG Y K, GUO Y P. A Google Earth-based study on point bar of meandering river.China's Manganese Industry, 2017, 35(2):141-143.
[18] 李少华, 张昌民, 林克湘, 等.储层建模中几种原型模型的建立.沉积与特提斯地质, 2004, 24(3):102-107. LI S H, ZHANG C M, LIN K X, et al. The construction of prototype models in reservoir modeling. Sedimentary Geology and Tethyan Geology, 2004, 24(3):102-107.
[19] 周银邦, 吴胜和, 计秉玉, 等.曲流河储层构型表征研究进展. 地球科学进展, 2011, 26(7):695-702. ZHOU Y B, WU S H, JI B Y, et al. Research progress on the characterization of fluvial reservoir architecture. Advances in Earth Science, 2011, 26(7):695-702.
[20] WILLIS B J, TANG H. Three-dimensional connectivity of point bar deposits. Journal of Sedimentary Research, 2010, 80:440-454.
[21] AMOS KJ, JEFF P P, BRADBURY W, et al. The influence of bend amplitude and planform morphology on sedimentation in submarine channels. Marine and Petroleum Geology, 2010, 27:1431-1447.
[22] DONSELAAR M E, OVEREEM I. Connectivity of fluvial point bar deposits:An example from the Miocene Huesca fluvial fan, Ebro Basin, Spain. AAPG Bulletin, 2008, 92(9):1109-1129.
[23] 李少华, 汗日明, 张昌民, 等.结合露头信息建立储层地质模型.天然气地球科学, 2006, 17(3):374-377. LI S H, HAN R M, ZHANG C M, et al. Integration of outcrop in reservoir modeling. Natural Gas Geoscience, 2006, 17(3):374-377.
[24] 赵资乐.黄河上游黑河、白河流域水沙规律.甘肃水利水电技术, 2005, 41(4):336-338. ZHAO Z L. Water and sediment laws of Heihe and Baihe river basins in Upper Yellow River. Gansu Water Resources and Hydropower Technology, 2005, 41(4):336-338.
[25] 黄汲清, 陈炳蔚.中国及邻区特提斯海的演化.北京:科学出版社, 1987:52-54. HUANG J Q, CHEN B W. The evolution of the Tethys in China and adjacent regions. Beijing:Science Press, 1987:52-54.
[26] 王云飞, 王苏民, 薛滨, 等.黄河袭夺若尔盖古湖时代的沉积学依据.科学通报, 1995, 40(8):723-725. WANG Y F, WANG S M, XUE B, et al. Sedimentological basis of the Yellow River's attack and capture of the ancient lake in Zoige. Chinese Science Bulletin, 1995, 40(8):723-725.
[27] 汤韬, 李志威.黄河源区弯曲河群分布与形态及边界条件.水利水电科技进展, 2020, 40(1):10-16. TANG T, LI Z W. Distribution, planform and boundary conditions of meandering river groups in source region of Yellow River. Advances in Science and Technology of Water Resources, 2020, 40(1):10-16.
[28] 杨玥, 李志威, 胡旭跃, 等.黄河源白河与黑河下游凸岸点边滩形态与变化规律.泥沙研究, 2021, 46(1):50-56. YANG Y, LI Z W, HU X Y, et al. Morphological characteristics and processes of point bars in the lower White and Black Rivers of the Yellow River Source region. Journal of Sediment Research, 2021, 46(1):50-56.
[29] 李志威, 王兆印, 李艳富, 等.黄河源区典型弯曲河流的几何形态特征.泥沙研究, 2012(4):11-17. LI Z W, WANG Z Y, LI Y F, et al. Planform geometry characteristics of typical meandering rivers in Yellow River Source. Journal of Sediment Research, 2012(4):11-17.
[30] 李志威, 王兆印, 潘保柱.牛轭湖形成机理与长期演变规律. 泥沙研究, 2012(5):16-25. LI Z W, WANG Z Y, PAN B Z. Formation mechanism and longterm evolution of oxbow lakes. Journal of Sediment Research, 2012(5):16-25.
[31] 殷丹.ArcGIS在河湖管理范围划界工作中的应用.水土保持应用技术, 2020, 194(2):43-44. YIN D. Application of ArcGIS in delimitation of river and lake management scope.Technology of Soil and Water Conservation, 2020, 194(2):43-44.
[32] 汤国安, 杨昕.ArcGIS地理信息系统空间分析实验教程. 北京:科学出版社, 2012:1-5. TANG G A, YANG X. ArcGIS geographic information system spatial analysis experiment course. Beijing:Science Press, 2012:1-5.
[33] 钱宁.关于河流分类及成因问题的讨论.地理学报, 1985, 40(1):1-10. QING N. On the classification and causes of formation of different channel patterns. Acta Geographica Sinica, 1985, 40(1):1-10.
[34] 倪晋仁, 王随继, 王光谦.现代冲积河流的河型空间转化模式探讨.沉积学报, 2000, 18(1):1-6. NI J R, WANG S J, WANG G Q. Spatial variations of channel patterns. Acta Sedimentologica Sinica, 2000, 18(1):1-6.
[35] 李志威, 刘晶, 胡世雄, 等.中国冲积大河的河型分布与成因. 水利水电科技进展, 2017, 37(2):7-13. LI Z W, LIU J, HU S X, et al. Distribution and formation of river patterns of large alluvial rivers in China. Advances in Science and Technology of Water Resources, 2017, 37(2):7-13.
[36] 钱宁, 张仁, 周志德. 河床演变学. 北京:科学出版社, 1987:167-178. QIAN N, ZHANG R, ZHOU Z D. Riverbed evolution. Beijing:Science Press, 1987:167-178.
[37] 王雷, 刘国涛, 龙涛, 等.一种曲流河点坝体内部侧积体描述方法.岩性油气藏, 2008, 20(4):132-134. WANG L, LIU G T, LONG T, et al. Description method of lateral accretion within point bar of meandering river. Lithologic Reservoirs, 2008, 20(4):132-134.
[38] 张昌民, 尹太举, 李少华, 等.基准面旋回对河道砂体几何形态的控制作用:以枣园油田孔一段枣Ⅱ-Ⅲ油组为例.岩性油气藏, 2007, 19(4):9-12. ZHANG C M, YIN T J, LI S H, et al. Control of base level cycles on channel sand geometry:A case study of Zao Ⅱ-Ⅲ reservoirs, Zaoyuan Oilfield. Lithologic Reservoirs, 2007, 19(4):9-12.
[1] YU Qixiang, LUO Yu, DUAN Tiejun, LI Yong, SONG Zaichao, WEI Qingliang. Reservoir forming conditions and exploration prospect of Jurassic coalbed methane encircling Dongdaohaizi sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(6): 45-55.
[2] HE Wenyuan, CHEN Keyang. Prediction method for lithologic reservoirs in Doshan slope zone of South Turgai Basin,Kazakhstan [J]. Lithologic Reservoirs, 2024, 36(4): 1-11.
[3] BAO Hanyong, ZHAO Shuai, ZHANG Li, LIU Haotian. Exploration achievements and prospects for shale gas of Middle-Upper Permian in Hongxing area,eastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(4): 12-24.
[4] WANG Tongchuan, CHEN Haoru, WEN Longbin, QIAN Yugui, LI Yuzhuo, WEN Huaguo. Identification and reservoir significance of Carboniferous karst paleogeomorphology in Wubaiti area,eastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(4): 109-121.
[5] TIAN Ya, LI Junhui, CHEN Fangju, LI Yue, LIU Huaye, ZOU Yue, ZHANG Xiaoyang. Tight reservoir characteristics and favorable areas prediction of Lower Cretaceous Nantun Formation in central fault depression zone of Hailar Basin [J]. Lithologic Reservoirs, 2024, 36(4): 136-146.
[6] LU Keliang, WU Kangjun, LI Zhijun, SUN Yonghe, XU Shaohua, LIANG Feng, LIU Lu, LI Shuang. Characteristics and evolution model of hydrocarbon accumulation of Cambrian Longwangmiao Formation in the north slope of central Sichuan paleo-uplift [J]. Lithologic Reservoirs, 2024, 36(4): 159-168.
[7] NIU Chengmin, HUI Guanzhou, DU Xiaofeng, GUAN Dayong, WANG Bingjie, WANG Qiming, ZHANG Hongguo. Sedimentary model of sublacustrine fan of the third member of Paleogene Dongying Formation and large-scale oilfield discovered in western slope of Liaozhong Sag [J]. Lithologic Reservoirs, 2024, 36(2): 33-42.
[8] WANG Tianhai, XU Duonian, WU Tao, GUAN Xin, XIE Zaibo, TAO Huifei. Sedimentary facies distribution characteristics and sedimentary model of Triassic Baikouquan Formation in Shawan Sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(1): 98-110.
[9] LONG Shengfang, HOU Yunchao, YANG Chao, GUO Yixuan, ZHANG Jie, ZENG Yali, GAO Nan, LI Shanghong. Sequence stratigraphy and evolution of Triassic Chang 7 to Chang 3 mebers in Qingcheng area,southwestern Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(1): 145-156.
[10] SUN Hanxiao, XING Fengcun, XIE Wuren, QIAN Hongshan. Lithofacies paleogeography evolution of Late Ordovician in Sichuan Basin and its surrounding areas [J]. Lithologic Reservoirs, 2024, 36(1): 121-135.
[11] FAN Rui, LIU Hui, YANG Peiguang, SUN Xing, MA Hui, HAO Fei, ZHANG Shanshan. Identification of carbonate dissolution valleys filled with mudstones of Cretaceous in block A,Oman Basin [J]. Lithologic Reservoirs, 2023, 35(6): 72-81.
[12] LIU Jiguo, ZHOU Hongpu, QIN Yanqun, ZOU Quan, ZHENG Fengyun, LI Zaohong, XIAO Gaojie. Exploration potential of lithologic reservoirs of Cretaceous AG Formation in Fula Sag,Muglad Basin,Africa [J]. Lithologic Reservoirs, 2023, 35(6): 82-91.
[13] MA Wenjie, WAGN Jingchun, TIAN Zuoji, MA Zhongzhen, WAN Xuepeng, LIN Jincheng, XU Xianglin, ZHOU Yubing. Accumulation model and favorable area prediction of structural-lithologic composite reservoirs in block W,the slope zone of Oriente Basin,South America [J]. Lithologic Reservoirs, 2023, 35(6): 29-36.
[14] XU Zhongbo, WANG Libing, SHEN Chunsheng, CHEN Mingyang, GAN Liqin. Architecture characterization of meandering river reservoirs of lower Ming huazhen Formation of Neogene in Penglai 19-3 oilfield,Bohai Sea [J]. Lithologic Reservoirs, 2023, 35(5): 100-107.
[15] QI Yukai, GUO Jingxiang, LUO Liang, LUO Fusong, ZHOU Xuewen, YAO Wei, ZHANG Tan, LIN Huixi. Development model and exploration direction of subtle traps in the southern slope of Kuqa Depression [J]. Lithologic Reservoirs, 2023, 35(5): 108-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] DUAN Tianxiang,LIU Xiaomei,ZHANG Yajun,XIAO Shuqin. Discussion on geologic modeling with Petrel[J]. Lithologic Reservoirs, 2007, 19(2): 102 -107 .
[2] ZHANG Liqiu. Optimization of upward strata combination of second class oil layer in eastern south Ⅱ area of Daqing Oilfield[J]. Lithologic Reservoirs, 2007, 19(4): 116 -120 .
[3] ZHANG Di,HOU Zhongjian,WANG Yahui,WANG Ying,WANG Chunlian. Sedimentary characteristics of lacustrine carbonate rocks of the first member of Shahejie Formation in Banqiao-Beidagang area[J]. Lithologic Reservoirs, 2008, 20(4): 92 -97 .
[4] FAN Huaicai, LI Xiaoping, DOU Tiancai, WU Xinyuan. Study on stress sensitivity effect on flow dynamic features of gas wells[J]. Lithologic Reservoirs, 2010, 22(4): 130 -134 .
[5] TIAN Shufang,ZHANG Hongwen. Application of life cycle theory to predict increasing trend of proved oil reserves in Liaohe Oilfield[J]. Lithologic Reservoirs, 2010, 22(1): 98 -100 .
[6] YANG Kai,GUO Xiao. Numerical simulation study of three-dimensional two-phase black oil model in fractured low permeability reservoirs[J]. Lithologic Reservoirs, 2009, 21(3): 118 -121 .
[7] ZHAI Zhongxi, QINWeijun, GUO Jinrui. Quantitative relations between oil-gas filling degree and channel seepage flow capacity of the reservoir:Example of Shuanghe Oilfield in Biyang Depression[J]. Lithologic Reservoirs, 2009, 21(4): 92 -95 .
[8] QI Minghui,LU Zhengyuan,YUAN Shuai,LI Xinhua. The analysis on the sources of water body and characteristic of water breakthough at Block 12 in Tahe Oilfield[J]. Lithologic Reservoirs, 2009, 21(4): 115 -119 .
[9] LI Xiangbo,CHEN Qi,lin,LIU Huaqing,WAN Yanrong,MU Jingkui,LIAO Jianbo,WEI Lihua. Three types of sediment gravity flows and their petroliferous features of Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2010, 22(3): 16 -21 .
[10] LIU Yun,LU Yuan,YI Xiangyi, ZHANG Junliang, ZHANG Jinliang,WANG Zhenxi. Gas hydrate forecasting model and its influencing factors[J]. Lithologic Reservoirs, 2010, 22(3): 124 -127 .
TRENDMD: