Lithologic Reservoirs ›› 2022, Vol. 34 ›› Issue (1): 43-51.doi: 10.12108/yxyqc.20220105

• PETROLEUM GEOLOGY • Previous Articles     Next Articles

Characteristics of paleotectonic stress field and fractures of WufengLongmaxi Formation in Luzhou area, southern Sichuan Basin

DONG Min1,2,3, GUO Wei4, ZHANG Linyan1,2,3, WU Zhonghai1,2,3, MA Licheng1,2,3, DONG Hui5, FENG Xingqiang1,2,3, YANG Yuehui1,2,3   

  1. 1. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China;
    2. Key Laboratory of Paleomag-netism and Tectonic Reconstruction, Ministry of Natural Resources, Beijing 100081, China;
    3. Key Laboratory of Petroleum Geo-mechanics, Chinese Geological Survey, Beijing 100081, China;
    4. PetroChina Research Institute of Exploration & Development, Beijing 100083, China;
    5. Xi'an Center of Geological Survey, China Geological Survey, Xi'an 710054, China
  • Received:2021-06-25 Revised:2021-08-18 Online:2022-01-01 Published:2022-01-21

Abstract: As a key area for deep shale gas exploration in southern Sichuan Basin,Luzhou area has experienced multi-stage tectonic movements since Mesozoic. Studies have shown that fractures of deep shale reservoirs in Wufeng-Longmaxi Formation of Lower Paleozoic are mainly controlled by regional paleotectonic stress field. In order to explore the favorable deep shale exploration areas in Luzhou area,taking the deep shale reservoir of Wufeng-Longmaxi Formation in southern Sichuan Basin as the research object,based on fold-fault system,comprehensive interpretation of seismic data,buried paleostructure depth map and testing of mechanical parameters of shale rocks,an ANSYS finite element numerical simulation method was applied to carry out numerical simulation of the palaeotectonic stress field of the target layer of Yanshan Episode Ⅲ(the main formation period of fractures). Combined with the measured results of drilling fractures,the characteristics of fractures of WufengLongmaxi formations were predicted by using the mechanical principle of fracture formation. The results show that the in-situ stress of the deep shale reservoirs in this area has the characteristics of differential distribution. The maximum principal stress direction of Yanshan Episode Ⅲ is NW,with a value of about 135°. Fractures are developed in the narrow anticlinal core and near faults,relatively developed in the low and steep syncline area,and weakly developed in the wide and gentle synclinal core. Horizontal bedding fractures and high-angle fractures are mainly developed in the study area. The fracture density distribution gradually decreases from NE to SW. In the low and steep syncline area with high stress value,fractures in deep shale reservoir are developed,which is conducive to the accumulation of free natural gas. The results can provide geological basis for deep shale gas exploration and development in Luzhou area.

Key words: paleotectonic stress field, numerical simulation, fracture prediction, Yanshan Episode, Luzhou area

CLC Number: 

  • TE121
[1] 马新华, 谢军.川南地区页岩气勘探开发进展及发展前景.石油勘探与开发, 2018, 45(1):161-169. MA X H, XIE J. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin,NW China. Petroleum Exploration and Development, 2018, 45(1):161-169.
[2] 聂海宽, 包书景, 高波, 等.四川盆地及其周缘下古生界页岩气保存条件研究.地学前缘, 2012, 19(3):280-294. NIE H K, BAO S J, GAO B, et al. A study of shale gas preservation conditions for the Lower Paleozoic in Sichuan Basin and its periphery. Earth Science Frontiers, 2012, 19(3):280-294.
[3] 金之钧, 胡宗全, 高波, 等.川东南地区五峰组-龙马溪组页岩气富集与高产控制因素.地学前缘, 2016, 23(1):1-10. JIN Z J, HU Z Q, GAO B, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi formations,southeastern Sichuan Basin. Earth Science Frontiers, 2016, 23(1):1-10.
[4] 刘树根, 邓宾, 钟勇, 等.四川盆地及周缘下古生界页岩气深埋藏-强改造独特地质作用. 地学前缘, 2016, 23(1):11-28. LIU S G, DENG B, ZHONG Y, et al. Unique geological features of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan Basin and its periphery. Earth Science Frontiers, 2016, 23(1):11-28.
[5] SONE H, ZOBACK M D. Viscous relaxation model for predicting least principal stress magnitudes in sedimentary rocks. Journal of Petroleum Science and Engineering, 2014, 124:416-431.
[6] 丁文龙, 曾维特, 王濡岳, 等.页岩储层构造应力场模拟与裂缝分布预测方法及应用.地学前缘, 2016, 23(2):63-74. DING W L, ZENG W T, WANG R Y, et al. Method and application of tectonic stress field simulation and fracture distribution prediction in shale reservoir. Earth Science Frontiers, 2016, 23(2):63-74.
[7] 胡志水, 彭大钧, 戴弹申.川南下二叠统局部构造断层应力数值模拟与裂缝分布. 新疆石油地质, 1994, 15(2):158-162. HU Z S, PENG D J, DAI D S. Numerical simulation of fault stress and fracture distribution within Lower Permian local structures in southern Sichuan. Xinjiang Petroleum Geology, 1994, 15(2):158-162.
[8] 许云飞, 左宇军, 邬忠虎, 等.凤冈地区燕山期构造应力场数值模拟及裂缝预测. 煤炭技术, 2017, 36(7):128-130. XU Y F, ZUO Y J, WU Z H, et al. Numerical simulation of tectonic stress field and fracture prediction of Yanshan period in Fenggang area. Coal Technology, 2017, 36(7):128-130.
[9] 陈峥嵘, 刘书杰, 曹砚锋, 等.沁水盆地煤层地应力模型及压裂裂缝形态预测方法.中国海上油气, 2018, 30(4):163-169. CHEN Z R, LIU S J, CAO Y F, et al. Methods to predict in-situ stress and fracture geometry of coal beds in Qinshui Basin. China Offshore Oil and Gas, 2018, 30(4):163-169.
[10] 杨洪志, 赵圣贤, 刘勇, 等.泸州区块深层页岩气富集高产主控因素.天然气工业, 2019, 39(11):55-63. YANG H Z, ZHAO S X, LIU Y, et al. Main controlling factors of enrichment and high-yield of deep shale gas in the Luzhou block, southern Sichuan Basin. Natural Gas Industry, 2019, 39(11):55-63.
[11] 王同, 杨克明, 熊亮, 等.川南地区五峰组-龙马溪组页岩层序地层及其对储层的控制.石油学报, 2015, 36(8):915-925. WANG T, YANG K M, XIONG L, et al. Shale sequence stratigraphy of Wufeng-Longmaxi Formation in southern Sichuan and their control on reservoirs. Acta Petrolei Sinica, 2015, 36(8):915-925.
[12] 丛平, 闫建平, 井翠, 等.页岩气储层可压性级别测井评价及展布特征:以川南X地区五峰组-龙马溪组为例.岩性油气藏, 2021, 33(3):177-188. CONG P, YAN J P, JING C, et al. Logging evaluation and distribution characteristics of fracturing grade in shale gas reservoir:A case study from Wufeng Formation and Longmaxi Formation in X area,southern Sichuan Basin. Lithologic Reservoirs, 2021, 33(3):177-188.
[13] 潘占昆, 刘冬冬, 黄治鑫, 等.川南地区泸州区块五峰组-龙马溪组页岩裂缝脉体中甲烷包裹体分析及古温压恢复.石油科学通报, 2019, 4(3):242-253. PAN Z K, LIU D D, HUANG Z X, et al. Paleotemperature and paleopressure of methane inclusions in fracture cements from the Wufeng-Longmaxi shales in the Luzhou area,southern Sichuan Basin. Petroleum Science Bulletin, 2019, 4(3):242-253.
[14] 张成林, 赵圣贤, 张鉴, 等.川南地区深层页岩气富集条件差异分析与启示.天然气地球科学, 2021, 32(2):248-261. ZHANG C L, ZHAO S X, ZHANG J, et al. Analysis and enlightenment of the difference of enrichment conditions for deep shale gas in southern Sichuan Basin. Natural Gas Geoscience, 2021, 32(2):248-261.
[15] XU Z H, ZHENG M J, LIU Z H, et al. Petrophysical properties of deep Longmaxi Formation shales in the southern Sichuan Basin, SW China. Petroleum Exploration and Development, 2020, 47(6):1183-1193.
[16] 刘树根, 孙玮, 李智武, 等.四川叠合盆地海相碳酸盐岩油气分布特征及其构造主控因素.岩性油气藏, 2016, 28(5):1-17. LIU S G, SUN W, LI Z W, et al. Distribution characteristics of marine carbonate reservoirs and their tectonic controlling factors across the Sichuan superimposed basin. Lithologic Reservoirs, 2016, 28(5):1-17.
[17] 孙玮, 刘树根, 韩克猷, 等.四川盆地燕山期古构造发展及对油气的影响.成都理工大学学报(自然科学版), 2012, 39(1):70-76. SUN W, LIU S G, HAN K Y, et al. Effect of the evolution of palaeotectonics on the petroleum genesis in Yanshan period, Sichuan Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 2012, 39(1):70-76.
[18] 邱登峰, 郑孟林, 张瑜, 等.塔中地区构造应力场数值模拟研究.大地构造与成矿学, 2012, 36(2):168-175. QIU D F, ZHENG M L, ZHANG Y, et al. Numerical simulation of the tectonic stress field in the Tazhong area. Geotectonica et Metallogenia, 2012, 36(2):168-175.
[19] 范宇, 王佳珺, 刘厚彬, 等.泸州区块全井段地层力学性能及井壁稳定性.科学技术与工程, 2020, 20(16):6433-6439. FAN Y, WANG J J, LIU H B, et al. Formation mechanical properties and wellbore stability of the whole well section in Luzhou block. Science Technology and Engineering, 2020, 20(16):6433-6439.
[20] ZHANG L Y, MA L C, ZHUO X Z, et al. Mesozoic-Cenozoic stress field magnitude in Sichuan Basin,China and its adjacent areas and the implication on shale gas reservoir:Determination by acoustic emission in rocks. China Geology, 2020, 3(4):591-601.
[21] 周灿灿.柏各庄地区构造样式及储层构造裂缝识别与预测. 广州:中国科学院研究生院, 2003. ZHOU C C. Studies on the structure mode of Baigezhuang region and the identification and prediction of structure fracture of reservoirs. Guangzhou:University of Chinese Academy of Sciences, 2003.
[22] 乐光禹, 杜思清, 黄继钧, 等.构造复合联合原理:川黔构造组合叠加分析.成都:成都科技大学出版社, 1996:281. LE G Y, DU S Q, HUANG J J, et al. Principle of tectonic composite combination:Superposition analysis of Sichuan-Guizhou tectonic combination. Chengdu:Chengdu University of Science and Technology Press, 1996:281.
[23] 任浩林, 刘成林, 刘文平, 等.四川盆地富顺-永川地区五峰组-龙马溪组应力场模拟及裂缝发育区预测. 地质力学学报, 2020, 26(1):74-83. REN H L, LIU C L, LIU W P, et al. Stress field simulation and fracture development prediction of the Wufeng FormationLongmaxi Formation in the Fushun-Yongchuan block,Sichuan Basin. Journal of Geomechanics, 2020, 26(1):74-83.
[24] 张守仁, 万天丰, 陈建平, 等.川西坳陷孝泉-新场地区须家河组二-四段构造应力场模拟及裂缝发育区带预测.石油与天然气地质, 2004, 25(1):70-80. ZHANG S R, WAN T F, CHEN J P, et al. Tectonic stress field modeling and fracture prediction in T3x2-4 strata in XiaoquanXinchang area, western Sichuan depression. Oil & Gas Geology, 2004, 25(1):70-80.
[25] 张林炎.安塞油田沿河湾探区长6储层构造裂缝分布定量预测.北京:中国地质科学院, 2007:56-57. ZHANG L Y. Distribution and predication of tectonic fracture prediction for Chang 6 reservoir in Yanhewan explorative area in Ansai oilfield. Beijing:Chinese Academy of Geological Sciences, 2007:56-57.
[26] 周新桂, 邓宏文, 操成杰, 等.储层构造裂缝定量预测研究及评价方法.地球学报, 2003, 24(2):175-180. ZHOU X G, DENG H W, CAO C J, et al. The methods for quantitative prediction and evaluation of structural fissures in reservoirs. Acta Geoscientica Sinica, 2003, 24(2):175-180.
[27] OU C H, LI C C, HUANG S Y, et al. Three-dimensional discrete network modeling of structural fractures based on the geometric restoration of structure surface:Methodology and its application. Journal of Petroleum Science and Engineering, 2018, 161:417-426.
[28] 王志宏, 郝翠果, 李建明, 等.川西前陆盆地超压分布及成因机制.岩性油气藏, 2019, 31(6):36-43. WANG Z H, HAO C G, LI J M, et al. Distribution and genetic mechanism of overpressure in western Sichuan Basin. Lithologic Reservoirs, 2019, 31(6):36-43.
[29] 潘荣, 朱筱敏, 王星星, 等.深层有效碎屑岩储层形成机理研究进展.岩性油气藏, 2014, 26(4):73-80. PAN R, ZHU X M, WANG X X, et al. Advancement on formation mechanism of deep effective clastic reservoir. Lithologic Reservoirs, 2014, 26(4):73-80.
[30] 郑珊珊, 刘洛夫, 汪洋, 等.川南地区五峰组-龙马溪组页岩微观孔隙结构特征及主控因素. 岩性油气藏, 2019, 31(3):55-65. ZHENG S S, LIU L F, WANG Y, et al. Characteristics of microscopic pore structures and main controlling factors of WufengLongmaxi Formation shale in southern Sichuan Basin. Lithologic Reservoirs, 2019, 31(3):55-65.
[1] CUI Chuanzhi, LI Jing, WU Zhongwei. Simulation of microscopic seepage characteristics of CO2 immiscible flooding under the effect of diffusion and adsorption [J]. Lithologic Reservoirs, 2024, 36(6): 181-188.
[2] LIU Renjing, LU Wenming. Mechanism and field practice of enhanced oil recovery by injection-production coupling in fault block reservoirs [J]. Lithologic Reservoirs, 2024, 36(3): 180-188.
[3] BAO Hanyong, LIU Chao, GAN Yuqing, XUE Meng, LIU Shiqiang, ZENG Lianbo, MA Shijie, LUO Liang. Paleotectonic stress field and fracture characteristics of shales of Ordovician Wufeng Formation to Silurian Longmaxi Formation in southern Fuling area,Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(1): 14-22.
[4] LI Fengfeng, NI Xiaowei, XU Sihui, WEI Xinlu, LIU Diren. Response characteristics and correction of LWD laterolog in anisotropic formations and deviated boreholes [J]. Lithologic Reservoirs, 2023, 35(3): 161-168.
[5] Lü Dongliang, YANG Jian, LIN Liming, ZHANG Kaili, CHEN Yanhu. Characterization model of oil-water relative permeability curves of sandstone reservoir and its application in numerical simulation [J]. Lithologic Reservoirs, 2023, 35(1): 145-159.
[6] YAN Jianping, LUO Jingchao, SHI Xuewen, ZHONG Guanghai, ZHENG Majia, HUANG Yi, TANG Hongming, HU Qinhong. Fracture development models and significance of Ordovician WufengSilurian Longmaxi shale in Luzhou area,southern Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(6): 60-71.
[7] QIU Chen, YAN Jianping, ZHONG Guanghai, LI Zhipeng, FAN Cunhui, ZHANG Yue, HU Qinhong, HUANG Yi. Sedimentary microfacies division and logging identification of Ordovician Wufeng-Silurian Longmaxi shale in Luzhou area,Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(3): 117-130.
[8] ZHANG Wei, LI Lei, QIU Xinwei, GONG Guangchuan, CHENG Linyan, GAO Yifan, YANG Zhipeng, YANG Lei. A/S control on spatiotemporal evolution of deltas in rifted lacustrine basin and its numerical simulation: A case study of Paleogene Wenchang Formation in Lufeng 22 subsag,Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2022, 34(3): 131-141.
[9] ZHANG Haoyu, LI Mao, KANG Yongmei, WU Zemin, WANG Guang. Reservoir architecture and fine characterization of remaining oil of Chang 3 reservoir in Zhenbei oilfield,Ordos Basin [J]. Lithologic Reservoirs, 2021, 33(6): 177-188.
[10] ZHU Suyang, LI Dongmei, LI Chuanliang, LI Huihui, LIU Xiongzhi. Re-discussion on principle of constant porosity during primary deformation of rock [J]. Lithologic Reservoirs, 2021, 33(2): 180-188.
[11] SUN Xiping, ZHANG Xin, LI Xuan, HAN Yongke, WANG Chunming, WEI Jun, HU Ying, XU Guangcheng, ZHANG Ming, DAI Xiaofeng. Reservoir prediction for weathering and leaching zone of bedrock buried hill based on seismic pre-stack depth migration [J]. Lithologic Reservoirs, 2021, 33(1): 220-228.
[12] LIU Mingming, WANG Quan, MA Shou, TIAN Zhongzheng, CONG Yan. Well placement optimization of coalbed methane based on hybrid particle swarm optimization algorithm [J]. Lithologic Reservoirs, 2020, 32(6): 164-171.
[13] LI Zihan, HE Yufa, ZHANG Binhai, ZHONG Haiquan. Solution and realization of coupled model of temperature and pressure field in deep water gas well testing [J]. Lithologic Reservoirs, 2020, 32(4): 163-171.
[14] GUAN Hua, GUO Ping, ZHAO Chunlan, TAN Baoguo, XU Dongmei. Mechanism of nitrogen flooding in Yong 66 block of Yong'an Oilfield,Bohai Bay Basin [J]. Lithologic Reservoirs, 2020, 32(2): 149-160.
[15] LUO Zhifeng, HUANG Jingyun, HE Tianshu, HAN Mingzhe, ZHANG Jintao. Extending regularity of fracture height by acid fracturing in carbonate reservoir: a case study of Qixia Formation in western Sichuan [J]. Lithologic Reservoirs, 2020, 32(2): 169-176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Lithologic Reservoirs, 2022, 34(2): 0 .
[2] LI Zaiguang,LI Lin. Automatic mapping based on well data[J]. Lithologic Reservoirs, 2007, 19(2): 84 -89 .
[3] CHENG Yuhong,GUO Yanru,ZHENG Ximing,FANG Naizhen,MA Yuhu. The interpretation method and application effect determined by multiple seismic and logging factors[J]. Lithologic Reservoirs, 2007, 19(2): 97 -101 .
[4] LIU Juntian,JIN Zhenjia,LI Zaiguang,TAN Xinping,GUO Lin,WANG Bo,LIU Yuxiang. Controlling factors for lithologic hydrocarbon reservoirs and petroleum prospecting target in Xiaocaohu area , Taibei Sag[J]. Lithologic Reservoirs, 2007, 19(3): 44 -47 .
[5] SHANG Changliang, FU Shouxian. Application of 3D seismic survey in loess tableland[J]. Lithologic Reservoirs, 2007, 19(3): 106 -110 .
[6] WANG Changyong, ZHENG Rongcai, WANG Jianguo, CAO Shaofang, Xiao Mingguo. Sedimentary characteristics and evolution of Badaowan Formation of Lower Jurassic in northwest margin of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(2): 37 -42 .
[7] WANG Ke1 LIU Xianyang, ZHAO Weiwei, SONG Jianghai, SHI Zhenfeng, XIANG Hui. Char acter istics and geological significance of seismites of Paleogene in Yangxin Subsag of J iyang Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 54 -59 .
[8] SUN Hongbin, ZHANG Fenglian. Structural-sedimentary evolution char acter istics of Paleogene in Liaohe Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 60 -65 .
[9] LI Chuanliang. Can uplift r esult in abnormal high pr essur e in formation?[J]. Lithologic Reservoirs, 2008, 20(2): 124 -126 .
[10] WEI Qinlian,ZHENG Rongcai,XIAO Ling,MA Guofu,DOU Shijie,TIAN Baozhong. Study on horizontal heterogeneity in Serie Inferiere of Triassic in 438b block , Algeria[J]. Lithologic Reservoirs, 2009, 21(2): 24 -28 .
TRENDMD: