Lithologic Reservoirs ›› 2022, Vol. 34 ›› Issue (1): 52-62.doi: 10.12108/yxyqc.20220106

• PETROLEUM GEOLOGY • Previous Articles     Next Articles

Geochemical characteristics and geological significance of siliceous rocks of Wufeng-Longmaxi Formation in Xianfeng area, western Hubei

WANG Deng1,2, ZHOU Bao1,2, LENG Shuangliang1,2, WEN Yaru1, LIU Hai3, ZHANG Xiaobo1, YU Jianghao1, CHEN Wei1   

  1. 1. Hubei Geological Survey, Wuhan 430034, China;
    2. Hubei Geological Exploration Engineering Technology Research Center, Wuhan 430022, China;
    3. Sulige Gas Field Branch, CNPC Xibu Drilling Engineering Company Limited, Ordos 017300, Inner Mongolia, China
  • Received:2021-08-25 Revised:2021-10-28 Online:2022-01-01 Published:2022-01-21

Abstract: In order to study the geochemical characteristics and genesis of siliceous rocks of Wufeng-Longmaxi Formation in Xianfeng area of western Hubei, the siliceous rocks of Shaling profile in Xianfeng area were identified by thin section identification, scanning electron microscope, major and trace elements analysis, and compared with typical hydrothermal siliceous rocks. The results show that the siliceous rocks of Wufeng Formation and Longmaxi Formation in the study area have high SiO2 content(the average mass fraction is 83.58% and 76.47% respectively). The siliceous minerals are mainly chalcedony, containing a small amount of micro quartz and terrigenous clastic quartz, with high Al(/Al+ Fe+ Mn), low MnO/TiO2 and high LaN/YbN values. The average values of w(LaN)/w(CeN) of Wufeng Formation and Longmaxi Formation are 1.15 and 1.06 respectively, with weak negative Ce anomaly and negative Eu anomaly, which are obviously different from hydrothermal siliceous rocks. The siliceous rocks of Wufeng Formation and Longmaxi Formation in the study area are of normal marine sedimentary origin, mainly biological sedimentation, accompanied by terrigenous input, and the sedimentary environment is a semi-restricted deep-water shelf on the continental margin. The relationship between biogenic silica content and TOC content is not a simple linear one, but increases at first and then decreases. Furthermore, the quartz intragranular pores and organic pores developed in radiolarians can significantly increase the reservoir space of siliceous rocks and improve shale gas capacity storage of siliceous rocks.

Key words: geochemical characteristics, siliceous rock, Wufeng Formation, Longmaxi Formation, Xianfeng area, western Hubei

CLC Number: 

  • TE122.1+13
[1] 何俊国, 周永章, 聂凤军, 等.西藏南部热水沉积硅质岩岩石学和地球化学特征及地质意义. 矿物岩石地球化学通报, 2007, 26(1):74-81. HE J G, ZHOU Y Z, NIE F J, et al. Petrologic and geochemical characteristics of the hydrothermal chert in southern Tibet and its geological significance. Bulletin of Mineralogy, Petrology and Geochemistry, 2007, 26(1):74-81.
[2] 邱振, 谈昕, 卢斌, 等. 四川盆地巫溪地区五峰组-龙马溪组硅质岩地球化学特征. 矿物岩石地球化学通报, 2018, 37(5):880-887. QIU Z, TAN X, LU B, et al. Geochemical characteristics of cherts from the Wufeng and Longmaxi Formations in the Wuxi area, Sichuan Basin. Bulletin of Mineralogy, Petrology and Geochemi-stry, 2018, 37(5):880-887.
[3] 危凯, 陈孝红, 王传尚, 等. 湘鄂西地区晚埃迪卡拉世-早寒武世硅质岩成因及其页岩气地质意义. 地质科技通报, 2020, 39(2):20-30.WEI K, CHEN X H, WANG C S, et al. Origin of siliceous rocks in west Hunan and Hubei provinces during Late Ediacaran-Early Cambrian, and its geological significance of shale gas. Bulletin of Geological Science and Technology, 2020, 39(2):20-30.
[4] 张茜, 王剑, 余谦, 等. 扬子地台西缘盐源盆地下志留统龙马溪组黑色页岩硅质成因及沉积环境.地质论评, 2018, 64(3):610-622. ZHANG Q, WANG J, YU Q, et al. The silicon source and sedimentary environment of the Lower Silurian Longmaxi Formation in Yanyuan Basin, western edge of the Yangtze Platform. Geological Review, 2018, 64(3):610-622.
[5] 黄志诚, 黄钟瑾. 下扬子区五峰组火山碎屑岩与放射虫硅质岩. 沉积学报, 1991, 9(2):1-15. HUANG Z C, HUANG Z J. Pyroclastic rocks and radiolarian silicalites of Wufeng Formation in Lower Yangtze region. Acta Sedimentologica Sinica, 1991, 9(2):1-15.
[6] 高长林, 何将启. 北大巴山硅质岩的地球化学特征及其成因. 地球科学——中国地质大学学报, 1999, 24(3):246-250. GAO C L, HE J Q. Geochemical characteristics and genesis of siliceous rocks in northern of Daba mountain. Earth SciencesJournal of China University of Geosciences, 1999, 24(3):246250.
[7] 刘伟, 许效松, 冯心涛, 等. 中上扬子上奥陶统五峰组含放射虫硅质岩与古环境. 沉积与特提斯地质, 2010, 30(3):65-70. LIU W, XU X S, FENG X T, et al. Radiolarian bearing silicalites and paleoenvironment of Upper Ordovician Wufeng Formation in Middle Upper Yangtze. Sedimentary and Tethyan Geology, 2010, 30(3):65-70.
[8] 王淑芳, 邹才能, 董大忠, 等.四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义. 北京大学学报(自然科学版), 2014, 50(3):476-486. WANG S F, ZOU C N, DONG D Z, et al. Biogenic silica of organicrich shale in Sichuan Basin and its significance for shale gas. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(3):476-486.
[9] 王秀平, 牟传龙, 肖朝晖, 等.鄂西南地区五峰组-龙马溪组连续沉积特征. 天然气地球科学, 2019, 30(5):635-651. WANG X P, MOU C L, XIAO Z H, et al. Sedimentary characteristics of Ordovician Wufeng Formation-Longmaxi Formation in southwestern Hubei province. Natural Gas Geoscience, 2019, 30(5):635-651.
[10] 何贵松, 何希鹏, 高玉巧, 等. 中国南方3套海相页岩气成藏条件分析. 岩性油气藏, 2019, 31(1):57-68. HE G S, HE X P, GAO Y Q, et al. Analysis of accumulation conditions of three sets of marine shale gas in southern China. Lithologic Reservoirs, 2019, 31(1):57-68.
[11] 郑珊珊, 刘洛夫, 汪洋, 等. 川南地区五峰组-龙马溪组页岩微观孔隙结构特征及主控因素. 岩性油气藏, 2019, 31(3):55-65. ZHENG S S, LIU L F, WANG Y, et al. Characteristics of microscopic pore structures and main controlling factors of WufengLongmaxi Formation shale in southern Sichuan Basin. Lithologic Reservoirs, 2019, 31(3):55-65.
[12] 王朋飞, 金璨, 臧小鹏, 等. 渝东南地区海相页岩有机质孔隙发育特征及演化. 岩性油气藏, 2020, 32(5):46-53. WANG P F, JIN C, ZANG X P, et al. Development characteristics and evolution of organic matter pores of marine shale in southeastern Chongqing. Lithologic Reservoirs, 2020, 32(5):46-53.
[13] 高乔, 王兴志, 朱逸青, 等. 川南地区龙马溪组元素地球化学特征及有机质富集主控因素. 岩性油气藏, 2019, 31(4):72-84. GAO Q, WANG X Z, ZHU Y Q, et al. Elemental geochemical characteristics and main controlling factors of organic matter enrichment of Longmaxi Formation in southern Sichuan. Lithologic Reservoirs, 2019, 31(4):72-84.
[14] 赵建华, 金之钧, 金振奎, 等. 四川盆地五峰组-龙马溪组页岩岩相类型与沉积环境. 石油学报, 2016, 37(5):572-586. ZHAO J H, JIN Z J, JIN Z K, et al. Lithofacies types and sedimentary environment of shale in Wufeng-Longmaxi Formation in Sichuan Basin. Acta Petrolei Sinica, 2016, 37(5):572-586.
[15] 许涛, 韦恒叶, 张璇, 等. 中二叠统茅口组热液交代硅质岩成因-来自贵州桑树湾剖面角砾状硅质岩元素及硅同位素的证据. 石油学报, 2020, 41(4):446-456. XU T, WEI H Y, ZHANG X, et al. Genesis of hydrothermal replaced cherts in the Middle Permian Maokou Formation:Evidences from elements and silicon isotopes of brecciated cherts in Sangshuwan section, Guizhou province. Acta Petrolei Sinica, 2020, 41(4):446-456.
[16] 李红敬, 林正良, 解习农. 下扬子地区古生界硅岩地球化学特征及成因. 岩性油气藏, 2015, 27(5):232-239. LI H J, LIN L Z, XIE X N. Geochemical characteristics and origin of Paleozoic siliceous rocks in Lower Yangtze area. Lithologic Reservoirs, 2015, 27(5):232-239.
[17] BOSTROM K, PETERSON M N A. The origin of aluminumpoor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise. Marine Geology, 1969, 7(5):427-447.
[18] MURRAY R W. Chemical criteria to identify the depositional environment of chert:General principles and applications. Sedimentary Geology, 1994, 90(3/4):213-232.
[19] ADACHI M, YAMAMOTO K, SUGISAKI R. Hydrothermal chert and associated siliceous rocks from the northern Pacific:Their geological significance as indication of ocean ridge activity. Sedimentary Geology, 1986, 47(1/2):125-148.
[20] YAMAMOTO K. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terranes. Sedimentary Geology, 1987, 52(1/2):65-108.
[21] 张燕, 陈翠华, 刘树根, 等.贵州桑木场地区硅质岩地球化学特征及其成因探讨. 矿物岩石地球化学通报, 2013, 32(6):753-758. ZHANG Y, CHEN C H, LIU S G, et al. Geochemical characteristics and genesis discussion of the siliceous rock in the Sang Muchang area, Guizhou. China. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(6):753-758.
[22] 黄虎, 杜远生, 杨江海, 等. 水城-紫云-南丹裂陷盆地晚古生代硅质岩沉积物地球化学特征及其地质意义. 地质学报, 2012, 86(12):1994-2010. HUANG H, DU Y S, YANG J H, et al. Geochemical features of siliceous sediments of the Shuicheng-Ziyun-Nandan rift basin in the Late Paleozoic and their tectonic implication. Acta Geologica Sinica, 2012, 86(12):1994-2010.
[23] BOSTROM K, KRAEMER T, GARTNER S. Provenance and accumulation rates of opaline silica, Al, Ti, Fe, Mn, Cu, Ni and Co in Pacific pelagic sediments. Chemical Geology, 1973, 11(2):123-148.
[24] 张聪, 黄虎, 侯明才.地球化学方法在硅质岩成因与构造背景研究中的进展问题.成都理工大学学报(自然科学版), 2017, 44(3):294-304. ZHANG C, HUANG H, HOU M C. Progress and problems in the geochemical study on chert genesis for interpretation of tectonic background. Journal of Chengdu University of Technology (Science & Technology Edition), 2017, 44(3):294-304.
[25] 彭军, 伊海生, 夏文杰.扬子板块东南大陆边缘上震旦统热水成因硅质岩的地球化学标志. 成都理工学院学报, 2000, 27(1):8-14. PENG J, YI H S, XIA W J. Geochemical characteristics of the Upper Sinian hydrothermal chert on the southeastern continental margin of the Yangtze plate. Journal of Chengdu University of Technology, 2000, 27(1):8-14.
[26] 何俊国, 周永章, 杨志军, 等.藏南彭错林硅质岩地球化学特征及沉积环境分析. 吉林大学学报(地球科学版), 2009, 39(6):1056-1065. HE J G, ZHOU Y Z, YANG Z J, et al. Study on geochemical characteristics and depositional environment of Pengcuolin chert, southern Tibet. Journal of Jilin University(Earth Science Edition), 2009, 39(6):1056-1065.
[27] 张亚冠, 杜远生, 徐亚军, 等. 湘中震旦纪-寒武纪之交硅质岩地球化学特征及成因环境研究. 地质论评, 2015, 61(3):499-510. ZHANG Y G, DU Y S, XU Y J, et al. Geochemical characteristics of siliceous rocks during the Transition from Sinian(Ediacaran)to Cambrian in central Hunan and its implication for genesis and sedimentary environment. Geological Review, 2015, 61(3):499-510.
[28] CHEN D Z, QING H R, YAN X, et al. Hydrothermal venting and basin evolution(Devonian, South China):Constraints from rare earth element geochemistry of chert. Sedimentary Geology, 2006, 183(3/4):203-216.
[29] DOUVILLE E, BIENVENU P, CHARLOU J L, et al. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochimica et Cosmochimica Acta, 1999, 63(5):627-643.
[30] 宋史刚, 丁振举, 姚书振, 等. 碧口地块富铁硅岩REE及NdSr同位素组成及其古环境意义. 矿物岩石, 2008, 28(3):57-63. SONG S G, DING Z J, YAO S Z, et al. REE and Nd-Sr isotopic compositions of iron rich silicalites in Bikou terrane:Implication to ancient sedimentary environmental. Mineralogy and Petrology, 2008, 28(3):57-63.
[31] FLEET A J, RONA P A, BOSTROM K, et al. The rare earth element evidence in hydrothermal process at seafloor spreading centers. New York:Plenum Press, 1983:535-555.
[32] MURRAY R W, BUCHHOLTZ T, BRINK M R, et al. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology, 1990, 18(3):268-271.
[33] SUGISAKI R, YAMAMOTO K, ADACHI M. Triassic bedded cherts in central Japan are not pelagic. Nature, 1982, 298(5875):644-647.
[34] MURRAY R W, BUCHHOLTZ T, BRINK M R, et al. Rare earth, major, and trace element composition of Monterey and DSDP chert and associated host sediment:Assessing the influence of chemical fractionation during diagenesis. Geochimica et Cosmochimica Acta, 1992, 56(7):2657-2671.
[35] 赵建华, 金之钧, 金振奎, 等.四川盆地五峰组-龙马溪组含气页岩中石英成因研究. 天然气地球科学, 2016, 27(2):377386. ZHAO J H, JIN Z J, JIN Z K, et al. The genesis of quartz in Wufeng-Longmaxi gas shales Sichuan Basin. Natural Gas Geoscience, 2016, 27(2):377-386.
[36] 刘江涛, 李永杰, 张元春, 等. 焦石坝五峰组龙马溪组页岩硅质生物成因的证据及其地质意义. 中国石油大学学报(自然科学版), 2017, 41(1):34-41. LIU J T, LI Y J, ZHANG Y C, et al. Evidences of biogenic silica of Wufeng-Longmaxi Formation shale in Qiaoshiba area and its geological significance. Journal of China University of Petroleum(Edition of Natural Sciences), 2017, 41(1):34-41.
[37] 杨宇宁, 王剑, 郭秀梅, 等.渝东北田坝地区五峰-龙马溪组页岩矿物学特征及其油气地质意义. 沉积学报, 2017, 35(4):772-778. YANG Y N, WANG J, GUO X M, et al. Mineralogical characteristics and petroleum geological significance of Wufeng-Longmaxi Formation shale in the Tianba area, northeast of Chongqing. Acta Sedimentologica Sinica, 2017, 35(4):772-778.
[38] 卢龙飞, 秦建中, 申宝剑, 等. 中上扬子地区五峰组-龙马溪组硅质页岩的生物成因证据及其与页岩气富集的关系. 地学前缘, 2018, 25(4):226-236. LU L F, QIN J Z, SHEN B J, et al. The origin of biogenic silica in siliceous shale from Wufeng-Longmaxi Formation in the Middle and Upper Yangtze region and its relationship with shale gas enrichment. Earth Science Frontiers, 2018, 25(4):226-236.
[39] 蔡全升, 陈孝红, 张保民, 等.鄂西宜昌地区五峰组-龙马溪组黑色岩系硅质来源及其油气地质意义.地质学报, 2020, 94(3):931-946. CAI Q S, CHEN X H, ZHANG B M, et al. Origin of siliceous minerals in the black shale of the Wufeng and Longmaxi formations in the Yichang area, western Hubei Province:Geological significance for shale gas. Acta Geologica Sinica, 2020, 94(3):931-946.
[40] 孙川翔, 聂海宽, 刘光祥, 等. 石英矿物类型及其对页岩气富集开采的控制:以四川盆地及其周缘五峰组龙马溪组为例. 地球科学, 2019, 44(11):3691-3707. SUN C X, NIN H K. LIU G X, et al. Quartz type and its control on shale gas enrichment and production:A case study of the WufengLongmaxi formations in the Sichuan Basin and its surrounding areas, China. Erath Science, 2019, 44(11):3691-3707.
[1] YANG Xuefeng, ZHAO Shengxian, LIU Yong, LIU Shaojun, XIA Ziqiang, XU Fei, FAN Cunhui, LI Yutong. Main controlling factors of shale gas enrichment of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Ningxi area,Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 99-110.
[2] QIU Yuchao, LI Yading, WEN Long, LUO Bing, YAO Jun, XU Qiang, WEN Huaguo, TAN Xiucheng. Structural characteristics and hydrocarbon accumulation model of Cambrian Xixiangchi Formation in eastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 122-132.
[3] CHENG Jing, YAN Jianping, SONG Dongjiang, LIAO Maojie, GUO Wei, DING Minghai, LUO Guangdong, LIU Yanmei. Low resistivity response characteristics and main controlling factors of shale gas reservoirs of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Changning area,southern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(3): 31-39.
[4] JI Yubing, GUO Bingru, MEI Jue, YIN Zhijun, ZOU Chen. Fracture modeling of shale reservoirs of Silurian Longmaxi Formation in Luobu syncline in Zhaotong National Shale Gas Demonstration Area, southern margin of Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(3): 137-145.
[5] ZHU Kangle, GAO Gang, YANG Guangda, ZHANG Dongwei, ZHANG Lili, ZHU Yixiu, LI Jing. Characteristics of deep source rocks and hydrocarbon accumulation model of Paleogene Shahejie Form ationin Qingshui subsag,Liaohe Depression [J]. Lithologic Reservoirs, 2024, 36(3): 146-157.
[6] BAO Hanyong, LIU Chao, GAN Yuqing, XUE Meng, LIU Shiqiang, ZENG Lianbo, MA Shijie, LUO Liang. Paleotectonic stress field and fracture characteristics of shales of Ordovician Wufeng Formation to Silurian Longmaxi Formation in southern Fuling area,Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(1): 14-22.
[7] SUN Hanxiao, XING Fengcun, XIE Wuren, QIAN Hongshan. Lithofacies paleogeography evolution of Late Ordovician in Sichuan Basin and its surrounding areas [J]. Lithologic Reservoirs, 2024, 36(1): 121-135.
[8] LI Erting, MI Julei, ZHANG Yu, PAN Yueyang, DILIDAER Rouzi, WANG Haijing, GAO Xiuwei. Source rock characteristics of Permian Pingdiquan Formation in Dongdaohaizi sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(1): 88-97.
[9] GUO Jinhao, HU Guoyi, HE Kun, MI Jingkui, TIAN Lianjie, HE Fei, GUO Chuyuan, LU Mengdie. Geochemical characteristics and sedimentary environment of source rocks of Permian Dalong Formation in northern Sichuan Basin [J]. Lithologic Reservoirs, 2023, 35(5): 139-152.
[10] DENG Meiling, WANG Ning, LI Xinqi, CHEN Rongtao, LIU Yan, XU Yaohui. Geochemical characteristics and sedimentary environment of source rocks of the third member of Paleogene Shahejie Formation in central Laizhouwan Sag,Bohai Sea [J]. Lithologic Reservoirs, 2023, 35(1): 49-62.
[11] YAN Jianping, LUO Jingchao, SHI Xuewen, ZHONG Guanghai, ZHENG Majia, HUANG Yi, TANG Hongming, HU Qinhong. Fracture development models and significance of Ordovician WufengSilurian Longmaxi shale in Luzhou area,southern Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(6): 60-71.
[12] WEI Xin, TANG Jianyun, SONG Hongxia, CHEN Yubao. Geochemical characteristics and hydrocarbon generation potential of Upper Paleozoic source rocks in Ganquan area,Ordos Basin [J]. Lithologic Reservoirs, 2022, 34(6): 92-100.
[13] QIU Chen, YAN Jianping, ZHONG Guanghai, LI Zhipeng, FAN Cunhui, ZHANG Yue, HU Qinhong, HUANG Yi. Sedimentary microfacies division and logging identification of Ordovician Wufeng-Silurian Longmaxi shale in Luzhou area,Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(3): 117-130.
[14] ZHANG Menglin, LI Guoqin, HE Jia, HENG De. Main controlling factors of Ordovician Wufeng-Silurian Longmaxi shale gas enrichment in Tiangongtang structure, southwestern margin of Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(2): 141-151.
[15] ZHANG Xiaoqin, LI Wei, WANG Feilong, WANG Ning, XU Yaohui, LIU Yan, CHENG Rujiao, LIU Huaqiu. Biomarker characteristics and geological significance of Paleogene source rocks in Liaodong Bay [J]. Lithologic Reservoirs, 2022, 34(1): 73-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] DUAN Tianxiang,LIU Xiaomei,ZHANG Yajun,XIAO Shuqin. Discussion on geologic modeling with Petrel[J]. Lithologic Reservoirs, 2007, 19(2): 102 -107 .
[2] ZHANG Liqiu. Optimization of upward strata combination of second class oil layer in eastern south Ⅱ area of Daqing Oilfield[J]. Lithologic Reservoirs, 2007, 19(4): 116 -120 .
[3] ZHANG Di,HOU Zhongjian,WANG Yahui,WANG Ying,WANG Chunlian. Sedimentary characteristics of lacustrine carbonate rocks of the first member of Shahejie Formation in Banqiao-Beidagang area[J]. Lithologic Reservoirs, 2008, 20(4): 92 -97 .
[4] FAN Huaicai, LI Xiaoping, DOU Tiancai, WU Xinyuan. Study on stress sensitivity effect on flow dynamic features of gas wells[J]. Lithologic Reservoirs, 2010, 22(4): 130 -134 .
[5] TIAN Shufang,ZHANG Hongwen. Application of life cycle theory to predict increasing trend of proved oil reserves in Liaohe Oilfield[J]. Lithologic Reservoirs, 2010, 22(1): 98 -100 .
[6] YANG Kai,GUO Xiao. Numerical simulation study of three-dimensional two-phase black oil model in fractured low permeability reservoirs[J]. Lithologic Reservoirs, 2009, 21(3): 118 -121 .
[7] ZHAI Zhongxi, QINWeijun, GUO Jinrui. Quantitative relations between oil-gas filling degree and channel seepage flow capacity of the reservoir:Example of Shuanghe Oilfield in Biyang Depression[J]. Lithologic Reservoirs, 2009, 21(4): 92 -95 .
[8] QI Minghui,LU Zhengyuan,YUAN Shuai,LI Xinhua. The analysis on the sources of water body and characteristic of water breakthough at Block 12 in Tahe Oilfield[J]. Lithologic Reservoirs, 2009, 21(4): 115 -119 .
[9] LI Xiangbo,CHEN Qi,lin,LIU Huaqing,WAN Yanrong,MU Jingkui,LIAO Jianbo,WEI Lihua. Three types of sediment gravity flows and their petroliferous features of Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2010, 22(3): 16 -21 .
[10] LIU Yun,LU Yuan,YI Xiangyi, ZHANG Junliang, ZHANG Jinliang,WANG Zhenxi. Gas hydrate forecasting model and its influencing factors[J]. Lithologic Reservoirs, 2010, 22(3): 124 -127 .
TRENDMD: