LITHOLOGIC RESERVOIRS ›› 2015, Vol. 27 ›› Issue (4): 113-118.doi: 10.3969/j.issn.1673-8926.2015.04.017

Previous Articles     Next Articles

Effect of water invasion on production of horizontal well in low permeability water drive gas reservoir

Yuan Lin1, Li Xiaoping2, Wang Changqing3   

  1.  1. Northeastern Sichuan Gas Production Plant , Southwest Oil and Gas Field , Sinopec , Langzhong 637402 , Sichuan , China ;2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation , Southwest Petroleum University , Chengdu 610500 , China ;3. No. 1 Gas Production Plant , PetroChina Changqing Oilfield Company , Jingbian 718500 , Shannxi , China
  • Online:2015-07-20 Published:2015-07-20

Abstract:

During the developing of low permeability water drive gas reservoir, even if water did not breakthrough at the bottom of the horizontal well, local water invasion was still an important factor for affecting the production of horizontal well. Based on the Joshi method, this paper simplified the three-dimensional seepage field of horizontal well into two two-dimensional seepage fields, namely the zone far from well and near wellbore, considering the local water invasion in the zone far from well and flow characteristic in low permeability gas reservoir, used the method of conformal transformation to build a new model for studying the production change law of horizontal well during the water invasion in low permeability water drive gas reservoir. Sensitivity analysis indicates that as the increasing of gas-water volume ratio, distance of water advance and stress sensitivity index, the production of horizontal well decreases, while as the increasing of primary formation permeability and slip factor, the production of horizontal well also increases, unless in the high pressure gas reservoir, water-bearing gas reservoir and gas wells with lower producing pressure drop, the effect of slippage effect and stress sensitivity on production can be neglected. This study can provide a new solution to study production change law of horizontal well during water invasion in low permeability water drive gas reservoir.

Key words: sedimentary characteristics, Late Cretaceous, Paleogene, Junggar Basin

[ 1 ] 饶良玉,吴向红,李贤兵,等 . 苏丹层状边水油藏水平井开发效果评价与对策研究[ J ] . 岩性油气藏, 2011 , 23 ( 5 ): 106-110.

Rao Liangyu , Wu Xianghong , Li Xianbing , et al. Development effect evaluation and strategy of horizontal wells in multilayer edge water

reservoir in Sudan [ J ] . Lithologic Reservoirs , 2011 , 23 ( 5 ): 106-110.

[ 2 ] 朱维耀,黄小荷,岳明 . 底水气藏水平井见水时间研究[ J ] . 科技导报, 2014 , 32 ( 8 ): 27-31.


Zhu Weiyao , Huang Xiaohe , Yue Ming. Prediction of water break-through time of horizontal well in gas reservoirs with bottom water [ J ] . Science & Technology Review , 2014 , 32 ( 8 ): 27-31.

[ 3 ] 李晓平,袁淋,罗诚,等 . 边水推进对水平井产量的影响[ J ] . 岩性油气藏, 2014 , 26 ( 5 ): 107-112.

Li Xiaoping , Yuan Lin , Luo Cheng , et al. Effect of advance of edgewater on productivity of horizontal well [ J ] . Lithologic Reservoirs , 2014 , 26 ( 5 ): 107-112.

[ 4 ] 田风民 . 水平井的优化设计及油藏潜力挖掘研究[ J ] . 渤海大学学报:自然科学版, 2007 , 28 ( 3 ): 207-211.

Tian Fengmin. On optimized design of horizontal well and its oil reservoir potential [ J ] . Journal of Bohai University : Natural Science Edition , 2007 , 28 ( 3 ): 207-211.

[ 5 ] Hernandez J C , Wojtanowicz A K. Optimum well completion strategies in reservoirs with bottom and edge water invasion [ C ] . Canadian International Petroleum Conference , Calgary , Alberta , 2007 : 1-13.

[ 6 ] Thornton K , Soliman M Y , Jorquera R , et al. Optimization of inflow control device placement and mechanical conformance decisions using a new coupled well-intervention simulator [ R ] . SPE 139435 ,2010.

[ 7 ] 袁淋,李晓平,赵萍萍,等 . 非均匀污染下水平气井二项式产能公式推导及应用[ J ] . 特种油气藏, 2013 , 20 ( 4 ): 85-87.

Yuan Lin , Li Xiaoping , Zhao Pingping , et al. The deduction and application of binomial productivity formula for horizontal gas-wells under non-uniform damage [ J ] . Special Oil & Gas Reservoirs , 2013 ,20 ( 4 ): 85-87.

[ 8 ] 袁淋,李晓平,孙飞,等 . 基于相似流动替换法预测水平井产量[ J ] . 油气地质与采收率, 2013 , 20 ( 6 ): 87-90.

Yuan Lin , Li Xiaoping , Sun Fei , et al. Deduction of productivity formula for horizontal well with displacement method between two similar flow [ J ] . Petroleum Geology and Recovery Efficiency , 2013 ,20 ( 6 ): 87-90.

[ 9 ] 袁淋,李晓平,张璐,等 . 水平井稳态产能公式对比与分析[ J ] .岩性油气藏, 2013 , 25 ( 6 ): 127-132.

Yuan Lin , Li Xiaoping , Zhang Lu , et al. The analysis and correlation of horizontal wells ’ steady productivity formulas [ J ] . Lithologic Reservoirs , 2013 , 25 ( 6 ):127-132.

[ 10 ] 袁淋,李晓平 . 低渗透气藏水平井气水两相产能研究[ J ] . 天然气地球科学, 2014 , 25 ( 9 ): 1455-1461.

YuanLin , LiXiaoping.Theproductivity study of gas-water two phase horizontal well in low-permeability gas reservoir [ J ] . Natural Gas Geoscience , 2014 , 25 ( 9 ): 1455-1461.

[ 11 ] Joshi S D. Augmentation of well production using slant and horizontal wells [ R ] . SPE 15375 , 1986 : 462-465.

[ 12 ] 熊健,刘向君,陈朕 . 低渗气藏压裂井动态产能预测模型研究[ J ] . 岩性油气藏, 2013 , 25 ( 2 ): 82-85.

Xiong Jian , Liu Xiangjun , Chen Zhen. Dynamic productivity prediction model for fracturing wells in low permeability gas reservoir [ J ] . Lithologic Reservoirs , 2013 , 25 ( 2 ): 82-85.

[ 13 ] Farquhar R A , Smart B G D , Todd A C , et al. Stress sensitivity of low-permeability sandstones from the rotliegendes sandstone [ R ] . SPE 26501 , 1993.

[ 14 ] 李晓平 . 地下油气渗流力学[ M ] . 北京:石油工业出版社, 2007 :55-57.

Li Xiaoping. The underground oil and gas percolation mechanics [ M ] . Beijing : Petroleum Industry Press , 2007 : 55-57.

[ 15 ] 陈元千 . 确定天然气物性的相关经验公式[ J ] . 新疆石油地质,1989 , 10 ( 2 ): 48-55.

Chen Yuanqian. Empirical formula to determine the natural gas physical properties [ J ] . Xinjiang Petroleum Geology , 1989 , 10 ( 2 ):48-55.

[1] YU Qixiang, LUO Yu, DUAN Tiejun, LI Yong, SONG Zaichao, WEI Qingliang. Reservoir forming conditions and exploration prospect of Jurassic coalbed methane encircling Dongdaohaizi sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(6): 45-55.
[2] LI Daoqing, CHEN Yongbo, YANG Dong, LI Xiao, SU Hang, ZHOU Junfeng, QIU Tingcong, SHI Xiaoqian. Intelligent comprehensive prediction technology of coalbed methane “sweet spot”reservoir of Jurassic Xishanyao Formation in Baijiahai uplift,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(6): 23-35.
[3] BAI Yubin, LI Mengyao, ZHU Tao, ZHAO Jingzhou, REN Haijiao, WU Weitao, WU Heyuan. Geochemical characteristics of source rocks and evaluation of shale oil “sweet spot”of Permian Fengcheng Formation in Mahu Sag [J]. Lithologic Reservoirs, 2024, 36(6): 110-121.
[4] QIAO Tong, LIU Chenglin, YANG Haibo, WANG Yifeng, LI Jian, TIAN Jixian, HAN Yang, ZHANG Jingkun. Characteristics and genetic mechanism of condensate oil and gas of the Jurassic Sangonghe Formation in western well Pen-1 sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(6): 169-180.
[5] ZHOU Ziqiang, ZHU Zhengping, PAN Renfang, DONG Yu, JIN Jineng. Simulation and prediction of tight sandstone reservoirs based on waveform facies-controlled inversion:A case study from the second member of Paleogene Kongdian Formation in southern Cangdong sag, Huanghua Depression [J]. Lithologic Reservoirs, 2024, 36(5): 77-86.
[6] YANG Haibo, FENG Dehao, YANG Xiaoyi, GUO Wenjian, HAN Yang, SU Jiajia, YANG Huang, LIU Chenglin. Characteristics of source rocks and thermal evolution simulation of Permian Pingdiquan Formation in Dongdaohaizi Sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(5): 156-166.
[7] WEI Chenglin, ZHANG Fengqi, JIANG Qingchun, LU Xuesong, LIU Gang, WEI Yanzhao, LI Shubo, JIANG Wenlong. Formation mechanism and evolution characteristics of overpressure in deep Permian in eastern Fukang Sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(5): 167-177.
[8] ZHOU Hongfeng, WU Haihong, YANG Yuxi, XIANG Hongying, GAO Jihong, HE Haowen, ZHAO Xu. Sedimentary characteristics of fan delta front of the fourth member of Cretaceous A’ershan Formation in Bayindulan Sag,Erlian Basin [J]. Lithologic Reservoirs, 2024, 36(4): 85-97.
[9] ZHANG Lei, LI Sha, LUO Bobo, LYU Boqiang, XIE Min, CHEN Xinping, CHEN Dongxia, DENG Caiyun. Accumulation mechanism of overpressured lithologic reservoirs of the third member of Paleogene Shahejie Formation in northern Dongpu Sag [J]. Lithologic Reservoirs, 2024, 36(4): 57-70.
[10] FENG Bin, HUANG Xiaobo, HE Youbin, LI Hua, LUO Jinxiong, LI Tao, ZHOU Xiaoguang. Reconstruction of source-to-sink system of the third member of Paleogene Shahejie Formation in Miaoxibei area,Bohai Bay Basin [J]. Lithologic Reservoirs, 2024, 36(3): 84-95.
[11] BIAN Baoli, LIU Hailei, JIANG Wenlong, WANG Xueyong, DING Xiujian. Discovery and exploration enlightenment of Carboniferous volcanic condensate gas reservoirs in western well Pen-1 sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(3): 96-105.
[12] ZHU Kangle, GAO Gang, YANG Guangda, ZHANG Dongwei, ZHANG Lili, ZHU Yixiu, LI Jing. Characteristics of deep source rocks and hydrocarbon accumulation model of Paleogene Shahejie Form ationin Qingshui subsag,Liaohe Depression [J]. Lithologic Reservoirs, 2024, 36(3): 146-157.
[13] XI Zhibo, LIAO Jianping, GAO Rongjin, ZHOU Xiaolong, LEI Wenwen. Tectonic evolution and hydrocarbon accumulation in northern Chenjia fault zone,Liaohe Depression [J]. Lithologic Reservoirs, 2024, 36(3): 127-136.
[14] FANG Xuqing, ZHONG Qi, ZHANG Jianguo, LI Junliang, MENG Tao, JIANG Zaixing, ZHAO Haibo. Cyclostratigraphy analysis and stratigraphic division of lower Sha-3 member of Paleogene in Zhanhua Sag,Bohai Bay Basin [J]. Lithologic Reservoirs, 2024, 36(3): 19-30.
[15] WANG Ya, LIU Zongbin, LU Yan, WANG Yongping, LIU Chao. Flow unit division based on SSOM and its production application: A case study of sublacustrine turbidity channels of middle Es3 in F oilfield,Bohai Bay Basin [J]. Lithologic Reservoirs, 2024, 36(2): 160-169.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Sijing,HUANG Peipei,WANG Qingdong,LIU Haonian,WU Meng,ZOU Mingliang. The significance of cementation in porosity preservation in deep-buried sandstones[J]. Lithologic Reservoirs, 2007, 19(3): 7 -13 .
[2] LIU Zhen,CHEN Yanpeng,ZHAO Yang,HAO Qi,XU Xiaoming,CHANG Mai. Distribution and controlling factors of hydrocarbon reservoirs in continental fault basins[J]. Lithologic Reservoirs, 2007, 19(2): 121 -127 .
[3] DING Chao,GUO Lan,YAN Jifu. Forming conditions of Chang 6 reservoir in Anding area of Zichang Oilfield[J]. Lithologic Reservoirs, 2009, 21(1): 46 -50 .
[4] LI Yanshan,ZHANG Zhansong,ZHANG Chaomo,CHEN Peng. Application of mercury injection data to Chang 6 reservoir classification in Changqing area[J]. Lithologic Reservoirs, 2009, 21(2): 91 -93 .
[5] LUO Peng,LI Guorong,SHI Zejin,ZHOU Dazhi,TANG Hongwei,ZHANG Deming. Analysis of sequence stratigraphy and sedimentary facies of M aokou Formation in southeastern Sichuan[J]. Lithologic Reservoirs, 2010, 22(2): 74 -78 .
[6] ZUO Guoping, TU Xiaolong, XIA Jiufeng. Study on volcanic reservoir types in Subei exploration area[J]. Lithologic Reservoirs, 2012, 24(2): 37 -41 .
[7] WANG Feiyu. Method to improve producing degree of thermal recovery horizontal wells and its application[J]. Lithologic Reservoirs, 2010, 22(Z1): 100 -103 .
[8] YUAN Yunfeng,CAI Ye,FAN Zuochun,JIANG Yiyang,QIN Qirong, JIANG Qingping. Fracture characteristics of Carboniferous volcanic reservoirs in Hongche fault belt of Junggar Basin[J]. Lithologic Reservoirs, 2011, 23(1): 47 -51 .
[9] YUAN Jianying, FU Suotang, CAO Zhenglin, YAN Cunfeng,ZHANG Shuichang, MA Dade. Multi-source hydrocarbon generation and accumulation of plateau multiple petroleum system in Qaidam Basin[J]. Lithologic Reservoirs, 2011, 23(3): 7 -14 .
[10] SHI Zhanzhan, HE Zhenhua, WEN Xiaotao, TANG Xiangrong. Reservoir detection based on EMD and GHT[J]. Lithologic Reservoirs, 2011, 23(3): 102 -105 .
TRENDMD: