Lithologic Reservoirs ›› 2023, Vol. 35 ›› Issue (4): 29-36.doi: 10.12108/yxyqc.20230403

• PETROLEUM EXPLORATION • Previous Articles     Next Articles

Characteristics and formation mechanism of hydraulic fractures in tight conglomerate reservoirs of Triassic Baikouquan Formation in Mahu Sag

QIN Jianhua1, WANG Jianguo2, LI Siyuan1, LI Sheng1, DOU Zhi2,3, PENG Simi2   

  1. 1. Research Institute of Exploration and Development, PetroChina Xinjiang Oilfield Company, Karamay 834000, Xinjiang, China;
    2. China University of Petroleum(Beijing), Beijing 102249, China;
    3. Urumqi Branch, Research Institute of BGP, CNPC, Urumqi 830026, China
  • Received:2022-08-01 Revised:2022-11-26 Online:2023-07-01 Published:2023-07-01

Abstract: The distribution of hydraulic fractures is very important for the efficient development of tight conglomerate reservoirs. Through the observation of fractures in the core from the horizontal coring well MaJ02 in the fractured conglomerate oil area of Mahu Sag,the type,occurrence,formation,opening,density and proppant filling of hydraulic fractures in the tight conglomerate reservoirs of Triassic Baikouquan Formation in Mahu Sag were analyzed,their distribution characteristics were clarified,and the formation mechanism was discussed. The results show that:(1)The hydraulic fractures developed in the cores of Baikouquan Formation in well MaJ02 account for 77.6% of the total number of fractures,with a strike of 90°-110 ° and a dip angle of 70°-90°. (2)The shear fractures formed by strike-slip mechanism in the study area account for 65.8%,followed by tensile fractures formed by tensile stress,accounting for 34.2%. Most of the shear fractures are in groups with small openings and fully filled,and the fracture surface is mainly through gravel,and multiple cracks are superimposed to form a fracture network fracture zone. The tensile fractures are mostly single with relatively large openings and irregular fracture surface,which are fully or half-filled,and the fracture surface is mainly surrounded by gravel.(3)The smaller the distance between the coring well and the fractured well in the study area,the smaller the perforation cluster spacing in the fracturing section,and the greater the hydraulic fracture density. Under the same fracturing engineering conditions,the fractures of argillaceous supported floating conglomerate facies and front sheet sand microfacies are relatively developed. The higher the sand content,the greater the hydraulic fracture density.

Key words: tight conglomerate, hydraulic fracture, tensile fracture, shear fracture, formation mechanism, Baikouquan Formation, Triassic, Mahu Sag

CLC Number: 

  • TE122.2
[1] 唐勇,曹剑,何文军,等.从玛湖大油区发现看全油气系统地质理论发展趋势[J].新疆石油地质, 2021, 42(1):1-9. TANG Yong, CAO Jian, HE Wenjun, et al. Development tendency of geological theory of total petroleum system:Insights from the discovery of Mahu large oil province[J]. Xinjiang Petroleum Geology, 2021, 42(1):1-9.
[2] 陈静,陈军,李卉,等.准噶尔盆地玛中地区二叠系-三叠系叠合成藏特征及主控因素[J].岩性油气藏, 2021, 33(1):71-80. CHEN Jing, CHEN Jun, LI Hui, et al. Characteristics and main controlling factors of Permian-Triassic superimposed reservoirs in central Mahu Sag, Junggar Basin[J]. Lithologic Reservoirs, 2021, 33(1):71-80.
[3] 张昌民,刘江艳,潘进,等.玛湖凹陷百口泉组砂砾岩建筑结构要素层次分析[J].新疆石油地质, 2018, 39(1):23-34. ZHANG Changmin, LIU Jiangyan, PAN Jin, et al. Hierarchical architectural element analysis for sandy conglomerate deposits of Baikouquan Formation, Mahu Sag[J]. Xinjiang Petroleum Geology, 2018, 39(1):23-34.
[4] 杜猛,向勇,贾宁洪,等.玛湖凹陷百口泉组致密砂砾岩储层孔隙结构特征[J].岩性油气藏, 2021, 33(5):120-131. DU Meng, XIANG Yong, JIA Ninghong, et al. Pore structure characteristics of tight glutenite reservoirs of Baikouquan Formation in Mahu Sag[J]. Lithologic Reservoirs, 2021, 33(5):120-131.
[5] 李国欣,覃建华,鲜成钢,等.致密砾岩油田高效开发理论认识、关键技术与实践:以准噶尔盆地玛湖油田为例[J].石油勘探与开发, 2020, 47(6):1185-1197. LI Guoxin, QIN Jianhua, XIAN Chenggang, et al. Theoretical understandings, key technologies and practices of tight conglomerate oilfield efficient development:A case study of the Mahu oilfield, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(6):1185-1197.
[6] 赵超峰,贾振甲,田建涛,等.基于井中微地震监测方法的压裂效果评价:以吉林探区Y22井为例[J].岩性油气藏, 2020, 32(2):161-168. ZHAO Chaofeng, JIA Zhenjia, TIAN Jiantao, et al. Fracturing effect evaluation based on borehole microseismic monitoring method:A case study from well Y22 in Jilin exploration area[J]. Lithologic Reservoirs, 2020, 32(2):161-168.
[7] LIN Menglu, CHEN Shengnan, DING Wei, et al. Effect of fracture geometry on well production in hydraulic-fractured tight oil reservoirs[J]. Journal of Canadian Petroleum Technology, 2015, 54(3):183-194.
[8] URBAN-RASCON E,AGUILERA R. Hydraulic fracturing modeling, fracture network, and microseismic monitoring[C]. Calgary:SPE Canada Unconventional Resources Conference, 2020.
[9] CIEZOBKA J, REEVES S. Overview of hydraulic fracturing test sites (HFTS) in the Permian basin and summary of selected results (HFTS-I in Midland and HFTS-Ⅱ in Delaware)[C]. Online:Latin America Unconventional Resources Technology Conference, 2020.
[10] RASSENFOSS S. A look into what fractures really look like[J]. Journal of Petroleum Technology, 2018, 70(11):28-36.
[11] MAITY D, CIEZOBKA J. Digital fracture characterization at hydraulic fracturing test site HFTS-Midland:Fracture clustering, stress effects and lithologic controls[C]. Online:SPE Hydraulic Fracturing Technology Conference and Exhibition, 2021.
[12] WANG Shugang,TAN Yunhui,SANGNIMNUAN A,et al. Learnings from the hydraulic fracturing test site (HFTS)#1, Midland Basin, West Texas:A geomechanics perspective[C]. Denver:Unconventional Resources Technology Conference, 2019.
[13] ZHAO Yu, BESSA F, SAHNI V, et al. Key learnings from hydraulic fracturing test site-2(HFTS-2), Delaware Basin[C]. Houston:SPE/AAPG/SEG Unconventional Resources Technology Conference, 2021.
[14] PUDUGRAMAM V S, ZHAO Y, BESSA F, et al. Analysis and integration of the hydraulic fracturing test site-2(HFTS-2) comprehensive dataset[C]. Houston:SPE/AAPG/SEG Unconventional Resources Technology Conference, 2021.
[15] SALAHSHOOR S. Analysis and Interpretation of multi-source data at the hydraulic fracturing test site:A data-driven approach to improve well performance evaluation in heterogeneous formations[C]. Online:Unconventional Resources Technology Conference, 2020:11.
[16] 牛小兵,冯胜斌,尤源,等.致密储层体积压裂作用范围及裂缝分布模式:基于压裂后实际取心资料[J].石油与天然气地质, 2019, 40(3):669-677. NIU Xiaobing, FENG Shengbin, YOU Yuan, et al. Fracture extension and distribution pattern of volume fracturing in tight reservoir:An analysis based on actual coring data after fracturing[J]. Oil&Gas Geology, 2019, 40(3):669-677.
[17] 支东明,唐勇,郑孟林,等.玛湖凹陷源上砾岩大油区形成分布与勘探实践[J].新疆石油地质, 2018, 39(1):1-8. ZHI Dongming, TANG Yong, ZHENG Menglin, et al. Discovery, distribution and exploration practice of large oil provinces of above-source conglomerate in Mahu Sag[J]. Xinjiang Petroleum Geology, 2018, 39(1):1-8.
[18] 余兴,尤新才,白雨,等.玛湖凹陷南斜坡断裂识别及其对油气成藏的控制作用[J].岩性油气藏, 2021, 33(1):81-89. YU Xing, YOU Xincai, BAI Yu, et al. Identification of faults in the south slope of Mahu Sag and its control on hydrocarbon accumulation[J]. Lithologic Reservoirs, 2021, 33(1):81-89.
[19] 宋永,周路,吴勇,等.准噶尔盆地玛东地区百口泉组多物源砂体分布预测[J].新疆石油地质, 2019, 40(6):631-637. SONG Yong, ZHOU Lu, WU Yong, et al. Prediction of multiprovenance sand body distribution in Triassic Baikouquan Formation of Madong area, Junggar Basin[J]. Xinjiang Petroleum Geology, 2019, 40(6):631-637.
[20] 唐勇,徐洋,李亚哲,等.玛湖凹陷大型浅水退覆式扇三角洲沉积模式及勘探意义[J].新疆石油地质, 2018, 39(1):16-22. TANG Yong, XU Yang, LI Yazhe, et al. Sedimentation model and exploration significance of large-scaled shallow retrogradation fan delta in Mahu Sag[J]. Xinjiang Petroleum Geology, 2018, 39(1):16-22.
[21] 刘敬寿,戴俊生,王珂,等.斜井岩心裂缝产状校正方法及其应用[J].石油学报, 2015, 36(1):67-73. LIU Jingshou, DAI Junsheng, WANG Ke, et al. An approach to correct the core fracture attitude in deviated boreholes and its application[J]. Acta Petrolei Sinica, 2015, 36(1):67-73.
[22] 杨帆,卞保力,刘慧颖,等.玛湖凹陷二叠系夏子街组限制性湖盆扇三角洲沉积特征[J].岩性油气藏, 2022, 34(5):63-72. YANG Fan, BIAN Baoli, LIU Huiying, et al. Sedimentary characteristics of fan delta in restricted lacustrine basin of Permian Xiazijie Formation in Mahu Sag[J]. Lithologic Reservoirs, 2022, 34(5):63-72.
[1] ZHAO Jun, LI Yong, WEN Xiaofeng, XU Wenyuan, JIAO Shixiang. Prediction of shale formation pore pressure based on Zebra Optimization Algorithm-optimized support vector regression [J]. Lithologic Reservoirs, 2024, 36(6): 12-22.
[2] ZHANG Peijun, XIE Mingxian, LUO Min, ZHANG Liangjie, CHEN Renjin, ZHANG Wenqi, YUE Xingfu, LEI Ming. Analysis of deformation mechanism of ultra thick gypsum salt rock and its significance for oil and gas reservoir formation:A case study of the Jurassic gypsum salt layers in theAgayry region,eastern right bank of theAmu Darya River [J]. Lithologic Reservoirs, 2024, 36(6): 36-44.
[3] BAI Yubin, LI Mengyao, ZHU Tao, ZHAO Jingzhou, REN Haijiao, WU Weitao, WU Heyuan. Geochemical characteristics of source rocks and evaluation of shale oil “sweet spot”of Permian Fengcheng Formation in Mahu Sag [J]. Lithologic Reservoirs, 2024, 36(6): 110-121.
[4] WANG Yifeng, TIAN Jixian, LI Jian, QIAO Tong, LIU Chenglin, ZHANG Jingkun, SHA Wei, SHEN Xiaoshuang. Geochemical characteristics of Permian condensate oil and gas and phase types in southwest of Mahu Sag [J]. Lithologic Reservoirs, 2024, 36(6): 149-159.
[5] YIN Hu, QU Hongjun, SUN Xiaohan, YANG Bo, ZHANG Leigang, ZHU Rongxing. Characteristics of deep-water deposits and evolution law of Triassic Chang 7 reservoir in southeastern Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(5): 145-155.
[6] WANG Zixin, LIU Guangdi, YUAN Guangjie, YANG Henglin, FU Li, WANG Yuan, CHEN Gang, ZHANG Heng. Characteristics and reservoir control of source rocks of Triassic Chang 7 member in Qingcheng area,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(5): 133-144.
[7] QIU Yuchao, LI Yading, WEN Long, LUO Bing, YAO Jun, XU Qiang, WEN Huaguo, TAN Xiucheng. Structural characteristics and hydrocarbon accumulation model of Cambrian Xixiangchi Formation in eastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 122-132.
[8] MOU Feisheng, YIN Xiangdong, HU Cong, ZHANG Haifeng, CHEN Shijia, DAI Linfeng, LU Yifan. Distribution characteristics and controlling factors of tight oil of Triassic Chang 7 member in northern Shaanxi area,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(4): 71-84.
[9] SONG Zhihua, LI Lei, LEI Dewen, ZHANG Xin, LING Xun. Application of improved U-Net network small faults identification technology to Triassic Baijiantan Formation in Mazhong area,Mahu Sag [J]. Lithologic Reservoirs, 2024, 36(3): 40-49.
[10] CAO Jiangjun, WANG Xi, WANG Liuwei, LI Cheng, SHI Jian, CHEN Zhaobing. Characteristics and main controlling factors of interbedded shale oil reservoirs of Triassic Chang 7 member in Heshui area,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(3): 158-171.
[11] BO Shangshang, TIAN Jixian, LI Yaoliang, WANG Yetong, WANG Hao, SUN Guoqiang. Provenance analysis of Upper Triassic Xujiahe Formation in northeastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(2): 99-112.
[12] WANG Tianhai, XU Duonian, WU Tao, GUAN Xin, XIE Zaibo, TAO Huifei. Sedimentary facies distribution characteristics and sedimentary model of Triassic Baikouquan Formation in Shawan Sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(1): 98-110.
[13] YIN Lu, XU Duonian, YUE Xingfu, QI Wen, ZHANG Jijuan. Reservoir characteristics and hydrocarbon accumulation rules of Triassic Baikouquan Formation in Mahu Sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(1): 59-68.
[14] LONG Shengfang, HOU Yunchao, YANG Chao, GUO Yixuan, ZHANG Jie, ZENG Yali, GAO Nan, LI Shanghong. Sequence stratigraphy and evolution of Triassic Chang 7 to Chang 3 mebers in Qingcheng area,southwestern Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(1): 145-156.
[15] BAO Hanyong, LIU Chao, GAN Yuqing, XUE Meng, LIU Shiqiang, ZENG Lianbo, MA Shijie, LUO Liang. Paleotectonic stress field and fracture characteristics of shales of Ordovician Wufeng Formation to Silurian Longmaxi Formation in southern Fuling area,Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(1): 14-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Qiulian, LI Aiqin, SUN Yanni, CUI Panfeng. Classification method for extra-low permeability reservoirs[J]. Lithologic Reservoirs, 2007, 19(4): 51 -56 .
[2] ZHANG Jie, ZHAO Yuhua. Seismic sequence of Triassic Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(4): 71 -74 .
[3] YANG Zhanlong,ZHANG Zhenggang,CHEN Qilin,GUO Jingyi,SHA Xuemei,LIU Wensu. Using multi-parameters analysis of seismic information to evaluate lithologic traps in continental basins[J]. Lithologic Reservoirs, 2007, 19(4): 57 -63 .
[4] ZHU Xiaoyan, LI Aiqin, DUAN Xiaochen, TIAN Suiliang, LIU Meirong. Fine stratigraphic classification and correlation of Chang 3 reservoir of Yanchang Formation in Zhenbei Oilfield[J]. Lithologic Reservoirs, 2007, 19(4): 82 -86 .
[5] FANG Chaohe, WANG Yifeng, ZHENG Dewen, GE Zhixin. Maceral and petrology of Lower Tertiary source rock in Qintong Sag, Subei Basin[J]. Lithologic Reservoirs, 2007, 19(4): 87 -90 .
[6] HAN Chunyuan,ZHAO Xianzheng,JIN Fengming,WANG Quan,LI Xianping,WANG Suqing. “Multi-factor controlling, four-factor entrapping and key-factor enrichment”of stratigraphic-lithologic reservoirs and exploration practice in Erlian Basin (Ⅳ)———Exploration practice[J]. Lithologic Reservoirs, 2008, 20(1): 15 -20 .
[7] DAI Chaocheng, ZHENG Rongcai, WEN Huaguo, ZHANG Xiaobing. Sequence-based lithofacies and paleogeography mapping of Paleogene in Lvda area, Liaodongwan Basin[J]. Lithologic Reservoirs, 2008, 20(1): 39 -46 .
[8] YIN Yanshu, ZHANG Shangfeng, YIN Taiju. High resolution sequence stratigraphy framework and the distribution of sandbodies in salt lake of Qianjiang Formation in Zhongshi Oilfield[J]. Lithologic Reservoirs, 2008, 20(1): 53 -58 .
[9] SHI Xuefeng, DU Haifeng. Study on the sedimentary facies of the member 3 and 4+5 of Yanchang Formation in Jiyuan area[J]. Lithologic Reservoirs, 2008, 20(1): 59 -63 .
[10] YAN Shibang, HUWangshui, LI Ruisheng, GUAN Jian, LI Tao, NIE Xiaohong. Structural features of contemporaneous thrust faults in Hongche fault belt of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(1): 64 -68 .
TRENDMD: