岩性油气藏 ›› 2019, Vol. 31 ›› Issue (2): 124133.doi: 10.12108/yxyqc.20190214
王蓓1,2, 刘向君1, 司马立强1, 徐伟2, 李骞2, 梁瀚2
WANG Bei1,2, LIU Xiangjun1, SIMA Liqiang1, XU Wei2, LI Qian2, LIANG Han2
摘要: 在以大斜度井和水平井为主要开发井型的缝洞型碳酸盐岩气藏中,要想获取裂缝在井点不同空间位置的产状较困难,裂缝精细描述存在不准确性,这些均影响了对气藏渗流通道的刻画,制约了边水气藏的科学、均衡开发。以磨溪龙王庙组碳酸盐岩储层为例,利用岩心照片、FMI成像测井、叠前地震各向异性裂缝预测和不连续性检测以及动态监测等资料,在大斜度井、水平井裂缝定性识别的基础上,定量表征了裂缝产状、开度、密度、孔隙度等参数,再结合所获取裂缝参数建立多尺度非结构化网格离散裂缝模型,明确了气藏高、低渗区域分布,优势水侵通道和水侵方式。结果表明:在磨溪龙王庙组气藏离散裂缝模型中,大尺度和中小尺度裂缝均较发育,高渗区呈连片状广泛分布;发育于气藏外围4个方向的9条边水水侵的高渗通道,表现为沿裂缝水窜型和沿溶蚀孔洞均匀推进型2种水侵方式。该方法及研究结果对同类特大型超压有水深层碳酸盐岩气藏裂缝精细描述、水侵优势通道刻画和水侵模式建立等理论和技术研究均具有借鉴意义。
中图分类号:
[1] 董少群, 曾联波, XU C S, 等.储层裂缝随机建模方法研究进展.石油地球物理勘探, 2018, 53(3):625-641. DONG S Q, ZENG L B, XU C S, et al. Research progress of stochastic modeling methods for reservoir fractures. Oil Geophysical Prospecting, 2018, 53(3):625-641. [2] 潘欣.构造裂缝识别与建模研究:以鄂尔多斯盆地中西部定边-华池地区延长组为例.西安:西北大学, 2010. PAN X. Identifying and modeling research of structural fracture:a case study of the Yanchang Formation in Dingbian-Huachi region of the central-west Ordos Basin. Xi'an:Northwest University, 2010. [3] XU C, DOWD P A, MARDIA K V, et al. A connectivity index for discrete fracture networks. Mathematical Geology, 2006, 38(5):611-634. [4] TRAN N H, CHEN Z X, RAHMAN S S. Integrated conditional global optimization for discrete fracture network modeling. Computers & Geosciences, 2006, 32:17-27. [5] 郑松青, 张宏方, 刘中春, 等.裂缝性油藏离散裂缝网络模型. 大庆石油学院学报, 2011, 35(6):49-54. ZHENG S Q, ZHANG H F, LIU Z C, et al. Discrete fracture network model for fractured reservoirs. Journal of Daqing Petroleum Institute, 2011, 35(6):49-54. [6] 李熙喆, 郭振华, 万玉金, 等.安岳气田龙王庙组气藏地质特征与开发技术政策.石油勘探与开发, 2017, 44(3):1-9. LI X Z, GUO Z H, WAN Y J, et al.Geological features of and development strategies for Cambrian Longwangmiao Formation gas reservoir in Anyue gas field, Sichuan Basin, SW China. Petroleum Exploration and Development, 2017, 44(3):1-9. [7] 黄小娟, 李治平, 周光亮, 等.裂缝性致密砂岩储层裂缝孔隙度建模:以四川盆地平落坝构造须家河组二段储层为例.石油学报, 2017, 38(5):570-577. HUANG X J, LI Z P, ZHOU G L, et al. Fracture porosity modeling of fractured tight sandstone reservoir:a case study of the reservoir in member 2 of Xujiahe Formation, Pingluoba structure, Sichuan Basin. Acta Petrolei Sinica, 2017, 38(5):570-577. [8] 杨雪飞, 王兴志, 代林呈, 等.川中地区下寒武统龙王庙组沉积相特征.岩性油气藏, 2015, 27(1):95-101. YANG X F, WANG X Z, DAI L C, et al. Sedimentary features of the Lower Cambrian Longwangmiao Formation in the central Sichuan Basin. Lithologic Reservoirs, 2015, 27(1):95-101. [9] 杨威, 魏国齐, 谢武仁, 等.四川盆地下寒武统龙王庙组沉积模式新认识.天然气工业, 2018, 38(7):8-15. YANG W, WEI G Q, XIE W R, et al. New understandings of the sedimentation mode of Lower Cambrian Longwangmiao Fm reservoirs in the Sichuan Basin. Natural Gas Industry, 2018, 38(7):8-15. [10] 高树生, 胡志明, 安为国, 等.四川盆地龙王庙组气藏白云岩储层孔洞缝分布特征.天然气工业, 2014, 34(3):103-109. GAO S S, HU Z M, AN W G, et al. Distribution characteristics of dolomite reservoir pores and caves of Longwangmiao Fm gas reservoirs in the Sichuan Basin. Natural Gas Industry, 2014, 34(3):103-109. [11] 闫建平, 司马立强, 谭学群, 等.伊朗Zagros盆地西南部白垩系Sarvak组碳酸盐岩储层特征.石油与天然气地质, 2015, 36(3):409-415. YAN J P, SIMA L Q, TAN X Q, et al.Carbonate reservoir characteristics of the Creataceous Sarvak Formation in southwestern Zagros Basin, Iran. Oil & Gas Geology, 2015, 36(3):409-415. [12] 赖强, 谢冰, 吴煜宇, 等.沥青质碳酸盐岩储集层岩石物理特征及测井评价:以四川盆地安岳气田寒武系龙王庙组为例. 石油勘探与开发, 2017, 44(6):889-895. LAI Q, XIE B, WU Y Y, et al. Petrophysical characteristics and logging evaluation of asphaltene carbonate reservoirs:a case study of the giant gas reservoir of the Cambrian Longwangmiao Formation in Anyue gas field,Sichuan Basin. Petroleum Exploration and Development, 2017, 44(6):889-895. [13] 谢冰, 白利, 赵艾琳, 等. Sonic Scanner声波扫描测井在碳酸盐岩储层裂缝有效性评价中的应用:以四川盆地震旦系为例.岩性油气藏, 2017, 29(4):117-123. XIE B, BAI L, ZHAO A L, et al. Application of Sonic Scanner logging to fracture effectiveness evaluation of carbonate reservoir:a case from Sinian in Sichuan Basin. Lithologic Reservoirs, 2017, 29(4):117-123. [14] YAN J P, FAN J, WANG M, et al. Rock fabric and pore structure of the Shahejie sandy conglomerates from the Dongying Depression in the Bohai Bay Basin, East China. Marine and Petroleum Geology, 2018, 97(11):624-638. [15] 黄苇, 马中远, 张黎. FMI成像测井在碳酸盐岩裂缝和断层研究中的应用.石油地质与工程, 2014, 28(3):44-47. HUANG W, MA Z Y, ZHANG L. Application of FMI imaging loging in carbonate rock fracture and fault research. Petroleum Geology and Engineering, 2014, 28(3):44-47. [16] 刘智颖, 章成广, 唐军, 等.裂缝对岩石电阻率的影响及其在含气饱和度计算中的应用.岩性油气藏, 2018, 30(2):120-128. LIU Z Y, ZHANG C G, TANG J, et al. Influence of fracture on rock resistivity and its application in saturation calculation. Lithologic Reservoirs, 2018, 30(2):120-128. [17] 司马立强, 陈志强, 王亮, 等.基于滩控岩溶型白云岩储层分类的渗透率建模方法研究:以川中磨溪-高石梯地区龙王庙组为例.岩性油气藏, 2017, 29(3):92-102. SIMA L Q, CHEN Z Q, WANG L, et al. Permeability modeling based on the classification of beach -controlled karst dolomite reservoirs:a case from Longwangmiao Formation in MoxiGaoshiti area,central Sichuan Basin. Lithologic Reservoirs, 2017, 29(3):92-102. [18] 王晖, 胡光义.渤海C油田潜山裂缝型储集层随机离散裂缝网络模型的实现与优选方法.岩性油气藏, 2012, 24(1):74-79. WANG H, HU G Y. Realization and optimization of discrete fracture network model of buried hill fractured reservoir in C oilfield, Bohai Bay. Lithologic Reservoirs, 2012, 24(1):74-79. [19] 刘建军, 吴明洋, 宋睿, 等.低渗透油藏储层多尺度裂缝的建模方法研究.西南石油大学学报(自然科学版), 2017, 39(4):90-103. LIU J J, WU M Y, SONG R, et al. Study on simulation method of multi-scale fractures in low permeability reservoirs. Journal of Southwest Petroleum University(Science & Technology Edition), 2017, 39(4):90-103. [20] GONG B, GANESH T, GUAN Q, et al. Application of multilevel and high-resolution fracture modeling in field-scale reservoir simulation study. SPE 186068, 2017. [21] 侯加根, 马晓强, 刘钰铭, 等.缝洞型碳酸盐岩储层多类多尺度建模方法研究:以塔河油田四区奥陶系油藏为例.地学前缘, 2012, 19(2):59-66. HOU J G, MA X Q, LIU Y M, et al. Modelling of carbonate fracture-vuggy reservoir:a case study of Ordovician reservoir of 4 th block in Tahe Oilfield. Earth Science Frontiers, 2012, 19(2):59-66. [22] 严侠, 黄朝琴, 李阳, 等.基于离散缝洞网络模型的缝洞型油藏混合模型.中南大学学报(自然科学版), 2017, 48(9):2474-2483. YAN X, HUANG Z Q, LI Y, et al. An efficient hybrid model for fractured-vuggy reservoir based on discrete fracture-vug network model. Journal of Central South University(Science and Technology), 2017, 48(9):2474-2483. [23] 王雪梅. 裂缝性储层等效介质模型及地震波场传播特征研究.北京:中国石油大学, 2011. WANG X M. Equivalent medium model and seismic wavefield propagation characteristics in fractured reservoirs. Beijing:China Unicersity of Petroleum, 2011. [24] LI J C, LEI Z D, TANG H Y, et al. Efficient evaluation of gas recovery enhancement by hydraulic fracturing in unconventional reservoirs. Journal of Natural Gas Science and Engineering, 2016, 35(9):873-881. |
[1] | 闫雪莹, 桑琴, 蒋裕强, 方锐, 周亚东, 刘雪, 李顺, 袁永亮. 四川盆地公山庙西地区侏罗系大安寨段致密油储层特征及高产主控因素[J]. 岩性油气藏, 2024, 36(6): 98-109. |
[2] | 周刚, 杨岱林, 孙奕婷, 严威, 张亚, 文华国, 和源, 刘四兵. 四川盆地及周缘寒武系沧浪铺组沉积充填过程及油气地质意义[J]. 岩性油气藏, 2024, 36(5): 25-34. |
[3] | 张晓丽, 王小娟, 张航, 陈沁, 关旭, 赵正望, 王昌勇, 谈曜杰. 川东北五宝场地区侏罗系沙溪庙组储层特征及主控因素[J]. 岩性油气藏, 2024, 36(5): 87-98. |
[4] | 杨学锋, 赵圣贤, 刘勇, 刘绍军, 夏自强, 徐飞, 范存辉, 李雨桐. 四川盆地宁西地区奥陶系五峰组—志留系龙马溪组页岩气富集主控因素[J]. 岩性油气藏, 2024, 36(5): 99-110. |
[5] | 陈康, 戴隽成, 魏玮, 刘伟方, 闫媛媛, 郗诚, 吕龑, 杨广广. 致密砂岩AVO属性的贝叶斯岩相划分方法——以川中地区侏罗系沙溪庙组沙一段为例[J]. 岩性油气藏, 2024, 36(5): 111-121. |
[6] | 计玉冰, 郭冰如, 梅珏, 尹志军, 邹辰. 四川盆地南缘昭通示范区罗布向斜志留系龙马溪组页岩储层裂缝建模[J]. 岩性油气藏, 2024, 36(3): 137-145. |
[7] | 白雪峰, 李军辉, 张大智, 王有智, 卢双舫, 隋立伟, 王继平, 董忠良. 四川盆地仪陇—平昌地区侏罗系凉高山组页岩油地质特征及富集条件[J]. 岩性油气藏, 2024, 36(2): 52-64. |
[8] | 岑永静, 梁锋, 王立恩, 刘倩虞, 张鑫哲, 丁熊. 四川盆地蓬莱—中江地区震旦系灯影组二段成藏特征[J]. 岩性油气藏, 2024, 36(2): 89-98. |
[9] | 张文播, 李亚, 杨田, 彭思桥, 蔡来星, 任启强. 四川盆地简阳地区二叠系火山碎屑岩储层特征与成岩演化[J]. 岩性油气藏, 2024, 36(2): 136-146. |
[10] | 包汉勇, 刘超, 甘玉青, 薛萌, 刘世强, 曾联波, 马诗杰, 罗良. 四川盆地涪陵南地区奥陶系五峰组—志留系龙马溪组页岩古构造应力场及裂缝特征[J]. 岩性油气藏, 2024, 36(1): 14-22. |
[11] | 张坦, 贾梦瑶, 孙雅雄, 丁文龙, 石司宇, 范昕禹, 姚威. 四川盆地南部中二叠统茅口组岩溶古地貌恢复及特征[J]. 岩性油气藏, 2024, 36(1): 111-120. |
[12] | 孙汉骁, 邢凤存, 谢武仁, 钱红杉. 四川盆地及周缘地区晚奥陶世岩相古地理演化[J]. 岩性油气藏, 2024, 36(1): 121-135. |
[13] | 李毕松, 苏建龙, 蒲勇, 缪志伟, 张文军, 肖伟, 张雷, 江馀. 四川盆地元坝地区二叠系茅口组相控岩溶刻画及预测[J]. 岩性油气藏, 2024, 36(1): 69-77. |
[14] | 魏全超, 李小佳, 李峰, 郝景宇, 邓双林, 吴娟, 邓宾, 王道军. 四川盆地米仓山前缘旺苍地区下寒武统筇竹寺组裂缝脉体发育特征及意义[J]. 岩性油气藏, 2023, 35(5): 62-70. |
[15] | 黄彦庆, 刘忠群, 王爱, 肖开华, 林恬, 金武军. 四川盆地元坝地区上三叠统须家河组三段致密砂岩气甜点类型与分布[J]. 岩性油气藏, 2023, 35(2): 21-30. |
|