岩性油气藏 ›› 2019, Vol. 31 ›› Issue (2): 124–133.doi: 10.12108/yxyqc.20190214

• 勘探技术 • 上一篇    下一篇

磨溪龙王庙组碳酸盐岩储层多尺度离散裂缝建模技术及其应用

王蓓1,2, 刘向君1, 司马立强1, 徐伟2, 李骞2, 梁瀚2   

  1. 1. 西南石油大学 地球科学与技术学院, 成都 610500;
    2. 中国石油西南油气田分公司勘探开发研究院, 成都 610041
  • 收稿日期:2018-09-19 修回日期:2018-11-25 出版日期:2019-03-21 发布日期:2019-03-21
  • 通讯作者: 刘向君(1969-),女,博士,教授,博士生导师,主要从事岩石物理及岩石力学、应用地球物理以及石油工程交叉学科领域的教学与研究工作。Email:13880093092@163.com。 E-mail:13880093092@163.com
  • 作者简介:王蓓(1989-),女,西南石油大学在读博士研究生,工程师,研究方向为开发地质。地址:(610041)四川省成都市高新区天府大道北段12号石油科技大厦。Email:wangbei08@petrochina.com.cn
  • 基金资助:
    国家“十三五”重大科技专项“四川盆地大型碳酸盐岩气田开发示范工程”(编号:2016ZX05052)和中国石油重大科技专项“西南油气田天然气上产300亿立方米关键技术研究与应用”(编号:2016E-06)联合资助

Multi-scale discrete fracture modeling technology for carbonate reservoir of Longwangmiao Formation in Moxi area and its application

WANG Bei1,2, LIU Xiangjun1, SIMA Liqiang1, XU Wei2, LI Qian2, LIANG Han2   

  1. 1. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
    2. Research Institute of Exploration and Development, PetroChina Southwest Oil & Gas Field Company, Chengdu 610041, China
  • Received:2018-09-19 Revised:2018-11-25 Online:2019-03-21 Published:2019-03-21

摘要: 在以大斜度井和水平井为主要开发井型的缝洞型碳酸盐岩气藏中,要想获取裂缝在井点不同空间位置的产状较困难,裂缝精细描述存在不准确性,这些均影响了对气藏渗流通道的刻画,制约了边水气藏的科学、均衡开发。以磨溪龙王庙组碳酸盐岩储层为例,利用岩心照片、FMI成像测井、叠前地震各向异性裂缝预测和不连续性检测以及动态监测等资料,在大斜度井、水平井裂缝定性识别的基础上,定量表征了裂缝产状、开度、密度、孔隙度等参数,再结合所获取裂缝参数建立多尺度非结构化网格离散裂缝模型,明确了气藏高、低渗区域分布,优势水侵通道和水侵方式。结果表明:在磨溪龙王庙组气藏离散裂缝模型中,大尺度和中小尺度裂缝均较发育,高渗区呈连片状广泛分布;发育于气藏外围4个方向的9条边水水侵的高渗通道,表现为沿裂缝水窜型和沿溶蚀孔洞均匀推进型2种水侵方式。该方法及研究结果对同类特大型超压有水深层碳酸盐岩气藏裂缝精细描述、水侵优势通道刻画和水侵模式建立等理论和技术研究均具有借鉴意义。

关键词: 大斜度井和水平井, 裂缝识别, DFM裂缝建模, 高、低渗区域分布, 水侵优势通道, 水侵方式, 四川盆地

Abstract: In fractured-cavern carbonate gas reservoirs with highly deviated wells and horizontal wells as the main development wells,it is difficult to obtain the fracture occurrence at different spatial locations of well points,and the precise description of fractures is inaccurate,which all influence the characterization of seepage channels in gas reservoirs and restrict the scientific and balanced development of edge water gas reservoir. Taking carbonate reservoir of Longwangmiao Formation in Moxi area as an example,based on qualitative identification of fractures in highly deviated wells and horizontal wells,the data of core photos,FMI imaging logging,prestack seismic anisotropic fracture prediction and discontinuity detection,dynamic monitoring,were used to quantitatively characterize the fracture occurrence,opening,density and porosity. Then combined with the obtained fracture parameters,a multi-scale unstructured grid discrete fracture model was establish to determine the regional distribution of high and low permeability gas reservoir,dominant water invasion channels and water invasion patterns. The results show that the large-scale and small-scale fractures are well developed in the discrete fracture model of gas reservoir in Longwangmiao Formation,and the high permeability zones are widely distributed in the form of continuous flakes. There are nine high permeability channels with edge water invasion developed in four directions around the gas reservoir,in which there are two types of water invasion:water channeling along fractures and uniformly advancing along dissolved cavities. This method and research results have reference significance for theoretical and technical research of the same super-large overpressure deep carbonate gas reservoirs, such as fine description of the fractures,characterization of the dominant channel of water invasion and establishment of water invasion model.

Key words: highly deviated wells and horizontal wells, fracture identification, DFM fracture modeling, distribution of high and low permeability zones, water invasion dominant channel, water invasion pattern, Sichuan Basin

中图分类号: 

  • TE319
[1] 董少群, 曾联波, XU C S, 等.储层裂缝随机建模方法研究进展.石油地球物理勘探, 2018, 53(3):625-641. DONG S Q, ZENG L B, XU C S, et al. Research progress of stochastic modeling methods for reservoir fractures. Oil Geophysical Prospecting, 2018, 53(3):625-641.
[2] 潘欣.构造裂缝识别与建模研究:以鄂尔多斯盆地中西部定边-华池地区延长组为例.西安:西北大学, 2010. PAN X. Identifying and modeling research of structural fracture:a case study of the Yanchang Formation in Dingbian-Huachi region of the central-west Ordos Basin. Xi'an:Northwest University, 2010.
[3] XU C, DOWD P A, MARDIA K V, et al. A connectivity index for discrete fracture networks. Mathematical Geology, 2006, 38(5):611-634.
[4] TRAN N H, CHEN Z X, RAHMAN S S. Integrated conditional global optimization for discrete fracture network modeling. Computers & Geosciences, 2006, 32:17-27.
[5] 郑松青, 张宏方, 刘中春, 等.裂缝性油藏离散裂缝网络模型. 大庆石油学院学报, 2011, 35(6):49-54. ZHENG S Q, ZHANG H F, LIU Z C, et al. Discrete fracture network model for fractured reservoirs. Journal of Daqing Petroleum Institute, 2011, 35(6):49-54.
[6] 李熙喆, 郭振华, 万玉金, 等.安岳气田龙王庙组气藏地质特征与开发技术政策.石油勘探与开发, 2017, 44(3):1-9. LI X Z, GUO Z H, WAN Y J, et al.Geological features of and development strategies for Cambrian Longwangmiao Formation gas reservoir in Anyue gas field, Sichuan Basin, SW China. Petroleum Exploration and Development, 2017, 44(3):1-9.
[7] 黄小娟, 李治平, 周光亮, 等.裂缝性致密砂岩储层裂缝孔隙度建模:以四川盆地平落坝构造须家河组二段储层为例.石油学报, 2017, 38(5):570-577. HUANG X J, LI Z P, ZHOU G L, et al. Fracture porosity modeling of fractured tight sandstone reservoir:a case study of the reservoir in member 2 of Xujiahe Formation, Pingluoba structure, Sichuan Basin. Acta Petrolei Sinica, 2017, 38(5):570-577.
[8] 杨雪飞, 王兴志, 代林呈, 等.川中地区下寒武统龙王庙组沉积相特征.岩性油气藏, 2015, 27(1):95-101. YANG X F, WANG X Z, DAI L C, et al. Sedimentary features of the Lower Cambrian Longwangmiao Formation in the central Sichuan Basin. Lithologic Reservoirs, 2015, 27(1):95-101.
[9] 杨威, 魏国齐, 谢武仁, 等.四川盆地下寒武统龙王庙组沉积模式新认识.天然气工业, 2018, 38(7):8-15. YANG W, WEI G Q, XIE W R, et al. New understandings of the sedimentation mode of Lower Cambrian Longwangmiao Fm reservoirs in the Sichuan Basin. Natural Gas Industry, 2018, 38(7):8-15.
[10] 高树生, 胡志明, 安为国, 等.四川盆地龙王庙组气藏白云岩储层孔洞缝分布特征.天然气工业, 2014, 34(3):103-109. GAO S S, HU Z M, AN W G, et al. Distribution characteristics of dolomite reservoir pores and caves of Longwangmiao Fm gas reservoirs in the Sichuan Basin. Natural Gas Industry, 2014, 34(3):103-109.
[11] 闫建平, 司马立强, 谭学群, 等.伊朗Zagros盆地西南部白垩系Sarvak组碳酸盐岩储层特征.石油与天然气地质, 2015, 36(3):409-415. YAN J P, SIMA L Q, TAN X Q, et al.Carbonate reservoir characteristics of the Creataceous Sarvak Formation in southwestern Zagros Basin, Iran. Oil & Gas Geology, 2015, 36(3):409-415.
[12] 赖强, 谢冰, 吴煜宇, 等.沥青质碳酸盐岩储集层岩石物理特征及测井评价:以四川盆地安岳气田寒武系龙王庙组为例. 石油勘探与开发, 2017, 44(6):889-895. LAI Q, XIE B, WU Y Y, et al. Petrophysical characteristics and logging evaluation of asphaltene carbonate reservoirs:a case study of the giant gas reservoir of the Cambrian Longwangmiao Formation in Anyue gas field,Sichuan Basin. Petroleum Exploration and Development, 2017, 44(6):889-895.
[13] 谢冰, 白利, 赵艾琳, 等. Sonic Scanner声波扫描测井在碳酸盐岩储层裂缝有效性评价中的应用:以四川盆地震旦系为例.岩性油气藏, 2017, 29(4):117-123. XIE B, BAI L, ZHAO A L, et al. Application of Sonic Scanner logging to fracture effectiveness evaluation of carbonate reservoir:a case from Sinian in Sichuan Basin. Lithologic Reservoirs, 2017, 29(4):117-123.
[14] YAN J P, FAN J, WANG M, et al. Rock fabric and pore structure of the Shahejie sandy conglomerates from the Dongying Depression in the Bohai Bay Basin, East China. Marine and Petroleum Geology, 2018, 97(11):624-638.
[15] 黄苇, 马中远, 张黎. FMI成像测井在碳酸盐岩裂缝和断层研究中的应用.石油地质与工程, 2014, 28(3):44-47. HUANG W, MA Z Y, ZHANG L. Application of FMI imaging loging in carbonate rock fracture and fault research. Petroleum Geology and Engineering, 2014, 28(3):44-47.
[16] 刘智颖, 章成广, 唐军, 等.裂缝对岩石电阻率的影响及其在含气饱和度计算中的应用.岩性油气藏, 2018, 30(2):120-128. LIU Z Y, ZHANG C G, TANG J, et al. Influence of fracture on rock resistivity and its application in saturation calculation. Lithologic Reservoirs, 2018, 30(2):120-128.
[17] 司马立强, 陈志强, 王亮, 等.基于滩控岩溶型白云岩储层分类的渗透率建模方法研究:以川中磨溪-高石梯地区龙王庙组为例.岩性油气藏, 2017, 29(3):92-102. SIMA L Q, CHEN Z Q, WANG L, et al. Permeability modeling based on the classification of beach -controlled karst dolomite reservoirs:a case from Longwangmiao Formation in MoxiGaoshiti area,central Sichuan Basin. Lithologic Reservoirs, 2017, 29(3):92-102.
[18] 王晖, 胡光义.渤海C油田潜山裂缝型储集层随机离散裂缝网络模型的实现与优选方法.岩性油气藏, 2012, 24(1):74-79. WANG H, HU G Y. Realization and optimization of discrete fracture network model of buried hill fractured reservoir in C oilfield, Bohai Bay. Lithologic Reservoirs, 2012, 24(1):74-79.
[19] 刘建军, 吴明洋, 宋睿, 等.低渗透油藏储层多尺度裂缝的建模方法研究.西南石油大学学报(自然科学版), 2017, 39(4):90-103. LIU J J, WU M Y, SONG R, et al. Study on simulation method of multi-scale fractures in low permeability reservoirs. Journal of Southwest Petroleum University(Science & Technology Edition), 2017, 39(4):90-103.
[20] GONG B, GANESH T, GUAN Q, et al. Application of multilevel and high-resolution fracture modeling in field-scale reservoir simulation study. SPE 186068, 2017.
[21] 侯加根, 马晓强, 刘钰铭, 等.缝洞型碳酸盐岩储层多类多尺度建模方法研究:以塔河油田四区奥陶系油藏为例.地学前缘, 2012, 19(2):59-66. HOU J G, MA X Q, LIU Y M, et al. Modelling of carbonate fracture-vuggy reservoir:a case study of Ordovician reservoir of 4 th block in Tahe Oilfield. Earth Science Frontiers, 2012, 19(2):59-66.
[22] 严侠, 黄朝琴, 李阳, 等.基于离散缝洞网络模型的缝洞型油藏混合模型.中南大学学报(自然科学版), 2017, 48(9):2474-2483. YAN X, HUANG Z Q, LI Y, et al. An efficient hybrid model for fractured-vuggy reservoir based on discrete fracture-vug network model. Journal of Central South University(Science and Technology), 2017, 48(9):2474-2483.
[23] 王雪梅. 裂缝性储层等效介质模型及地震波场传播特征研究.北京:中国石油大学, 2011. WANG X M. Equivalent medium model and seismic wavefield propagation characteristics in fractured reservoirs. Beijing:China Unicersity of Petroleum, 2011.
[24] LI J C, LEI Z D, TANG H Y, et al. Efficient evaluation of gas recovery enhancement by hydraulic fracturing in unconventional reservoirs. Journal of Natural Gas Science and Engineering, 2016, 35(9):873-881.
[1] 杨荣军, 彭平, 张静, 叶茂, 文华国. 四川盆地奉节地区上古生界古隆起特征及地质意义[J]. 岩性油气藏, 2021, 33(4): 1-9.
[2] 张本健, 田云英, 曾琪, 尹宏, 丁熊. 四川盆地西北部三叠系须三段砂砾岩沉积特征[J]. 岩性油气藏, 2021, 33(4): 20-28.
[3] 柴毓, 王贵文, 柴新. 四川盆地金秋区块三叠系须二段储层非均质性及成因[J]. 岩性油气藏, 2021, 33(4): 29-40.
[4] 向雪冰, 司马立强, 王亮, 李军, 郭宇豪, 张浩. 页岩气储层孔隙流体划分及有效孔径计算——以四川盆地龙潭组为例[J]. 岩性油气藏, 2021, 33(4): 137-146.
[5] 任杰. 碳酸盐岩裂缝性储层常规测井评价方法[J]. 岩性油气藏, 2020, 32(6): 129-137.
[6] 彭军, 褚江天, 陈友莲, 文舰, 李亚丁, 邓思思. 四川盆地高石梯—磨溪地区下寒武统沧浪铺组沉积特征[J]. 岩性油气藏, 2020, 32(4): 12-22.
[7] 戴晓峰, 谢占安, 杜本强, 张明, 唐廷科, 李军, 牟川. 高石梯—磨溪地区灯影组多次波控制因素及预测方法[J]. 岩性油气藏, 2020, 32(4): 89-97.
[8] 张满郎, 孔凡志, 谷江锐, 郭振华, 付晶, 郑国强, 钱品淑. 九龙山气田珍珠冲组砂砾岩储层评价及有利区优选[J]. 岩性油气藏, 2020, 32(3): 1-13.
[9] 张亚, 陈双玲, 张晓丽, 张玺华, 谢忱, 陈聪, 杨雨然, 高兆龙. 四川盆地茅口组岩溶古地貌刻画及油气勘探意义[J]. 岩性油气藏, 2020, 32(3): 44-55.
[10] 杨帆, 刘立峰, 冉启全, 孔金平, 黄苏琦, 黄昌武. 四川盆地磨溪地区灯四段风化壳岩溶储层特征[J]. 岩性油气藏, 2020, 32(2): 43-53.
[11] 吴丰, 习研平, 张亚, 陈双玲, 姚聪, 杨雨然. 川东—川南地区茅口组岩溶储层分类识别及有效性评价[J]. 岩性油气藏, 2020, 32(2): 90-99.
[12] 王登, 余江浩, 赵雪松, 陈威, 黄佳琪, 徐聪. 四川盆地石柱地区自流井组页岩气成藏条件与勘探前景[J]. 岩性油气藏, 2020, 32(1): 27-35.
[13] 吴家洋, 吕正祥, 卿元华, 杨家静, 金涛. 致密油储层中自生绿泥石成因及其对物性的影响——以川中东北部沙溪庙组为例[J]. 岩性油气藏, 2020, 32(1): 76-85.
[14] 李新豫, 张静, 包世海, 张连群, 朱其亮, 闫海军, 陈胜. 川中地区须二段气藏地震预测陷阱分析及对策——以龙女寺区块为例[J]. 岩性油气藏, 2020, 32(1): 120-127.
[15] 李贤胜, 刘向君, 熊健, 李玮, 梁利喜. 层理对页岩纵波特性的影响[J]. 岩性油气藏, 2019, 31(3): 152-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .