岩性油气藏 ›› 2020, Vol. 32 ›› Issue (5): 151–160.doi: 10.12108/yxyqc.20200516

• 油气田开发 • 上一篇    下一篇

基于REV尺度格子Boltzmann方法的页岩气藏渗流规律

符东宇, 李勇明, 赵金洲, 江有适, 陈曦宇, 许文俊   

  1. 油气藏地质及开发工程国家重点实验室·西南石油大学, 成都 610500
  • 收稿日期:2019-12-12 修回日期:2020-02-18 出版日期:2020-10-01 发布日期:2020-08-08
  • 作者简介:符东宇(1991-),男,西南石油大学在读博士研究生,研究方向为油气藏增产改造。地址:(610500)四川省成都市新都区新都大道8号西南石油大学。Email:swpufudongyu@hotmail.com。
  • 基金资助:
    四川省青年科技创新研究团队专项计划项目“页岩气体积压裂排液控制技术研究”(编号:2017TD0013)、国家自然科学基金重大项目“页岩地层动态随机裂缝控制机理与无水压裂理论”(编号:51490653)联合资助

Gas seepage flow law of shale gas reservoirs based on REV-scale lattice Boltzmann method

FU Dongyu, LI Yongming, ZHAO Jinzhou, JIANG Youshi, CHEN Xiyu, XU Wenjun   

  1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
  • Received:2019-12-12 Revised:2020-02-18 Online:2020-10-01 Published:2020-08-08

摘要: 页岩储层一般天然微裂缝发育,基质孔隙结构复杂,使得页岩气渗流过程呈现出多尺度多场耦合的特征。为了研究页岩气藏复杂的渗流规律,重构了天然微裂缝发育的页岩储层多孔介质模型,并围绕页岩气多重运移机制对广义格子Boltzmann模型进行了修正,建立了适用于模拟页岩气渗流特征的表征单元体(REV)尺度格子Boltzmann模型(LB模型),并基于天然微裂缝物性特征以及气体滑脱、吸附/解吸、表面扩散效应等渗流特征对该模型进行了敏感性参数分析。结果表明:当页岩储层天然微裂缝较发育时,微裂缝为气体在基质中流动的主要通道;其中裂缝密度是影响储层表观渗透率的主要参数,裂缝密度增大3~4倍,储层表观渗透率可增大10倍以上,而裂缝长度以及裂缝开度的影响程度均次之;努森数(Kn)是影响页岩气渗流的主要参数,随着Kn增大,克氏效应愈显著,特别当Kn > 0.1时,多孔介质表观渗透率增幅显著增大;页岩储层多孔介质表观渗透率会随着吸附气量的增大而减小,特别是当储层压力较低时,该现象更为显著;气体表面扩散效应对页岩气渗流过程的影响程度大,同等条件下考虑气体表面扩散效应的储层表观渗透率较忽略该效应可提升2~5倍,但提升作用受制于储层吸附气量的多少。该研究成果为页岩气微观渗流理论研究提供了新思路,为页岩气藏高效勘探开发提供了技术支撑。

关键词: 页岩气藏, 多孔介质, 微裂缝, 格子Boltzmann方法, 表征单元体尺度, 渗流规律

Abstract: Shale gas reservoirs are characterized by multi-scale and multi-field transport behaviors owing to the various natural micro-fractures and complex matrix pore structures. In order to study the complex seepage law of shale gas reservoir,a micro-fractured porous medium was reconstructed,the generalized lattice Boltzmann model was modified,and representative elementary volume(REV)scale lattice Boltzmann model(LB model)suitable for simulating the seepage characteristics of shale gas was established. Based on the physical properties of natural micro-fractures and seepage flow characteristics of gas slippage,gas adsorption-desorption and surface diffusion, the sensitivity parameters of the model were analyzed. The results show that the micro-fractures become the main channel for gas flow in the matrix when the natural micro-fractures of shale reservoir are relatively developed, the fracture density is the main parameter affecting the apparent permeability of the reservoir. When the fracture density was increased by 3-4 times,the apparent permeability of the reservoir can be increased by more than 10 times,and the fracture aperture and fracture length have less effect. Knudsen number(Kn) is a primary parameter which has great influence on the shale gas flow behaviors. The Klinkenberg effect become more remarkable due to the increasing Knudsen number,especially when Kn > 0.1,the increase rate of the apparent permeability becomes more significant. Moreover,the increasing adsorbed gas concentration is accounting for the decreasing apparent permeability,particularly in case of the lower pressure. The surface diffusion has great impacts on the gas flow behaviors,the apparent permeability could be 2 to 5 times larger than its counterparts in case the effect of surface diffusion has been ignored. However,the strength of this effect is subject to adsorbed gas concentration. This study could provide some instructive insights into the theoretical research of the shale gas seepage mechanism and some technological support for the exploration and exploitation of shale gas reservoirs.

Key words: shale gas reservoirs, porous media, micro-fracture, lattice Boltzmann method, representative elementary volume scale, seepage law

中图分类号: 

  • TE371
[1] 郑珊珊, 刘洛夫, 汪洋, 等. 川南地区五峰组-龙马溪组页岩微观孔隙结构特征及主控因素. 岩性油气藏, 2019, 31(3):55-65. ZHENG S S, LIU L F, WANG Y, et al. Characteristics of microscopic pore structures and main controlling factors of WufengLongmaxi Formation shale in southern Sichuan Basin. Lithologic Reservoirs, 2019, 31(3):55-65.
[2] 王登, 余江浩, 赵雪松, 等. 四川盆地石柱地区自流井组页岩气成藏条件与勘探前景. 岩性油气藏, 2020, 32(1):27-35. WANG D, YU J H, ZHAO X S, et al. Accumulation conditions and exploration potential of shale gas of Ziliujing Formation in Shizhu area, Sichuan Basin. Lithologic Reservoirs, 2020, 32(1):27-35.
[3] 罗群, 吴安彬, 王井伶, 等. 中国北方页岩气成因类型、成气模式与勘探方向. 岩性油气藏, 2019, 31(1):1-11. LUO Q, WU A B, WANG J L, et al. Genetic types, generation models, and exploration direction of shale gas in northern China. Lithologic Reservoirs, 2019, 31(1):1-11.
[4] MA Y S, CAI X Y, ZHAO P R. China's shale gas exploration and development:Understanding and practice. Petroleum Exploration and Development, 2018, 45(4):589-603.
[5] 吴克柳, 陈掌星. 页岩气纳米孔气体传输综述. 石油科学通报, 2016, 1(1):91-127. WU K L, CHEN Z X. Review of gas transport in nanopores in shale gas reservoirs. Petroleum Science Bulletin, 2016, 1(1):91-127.
[6] 姜瑞忠, 张福蕾, 崔永正, 等. 考虑应力敏感和复杂运移的页岩气藏压力动态分析. 岩性油气藏, 2019, 31(4):149-156. JIANG R Z, ZHANG F L, CUI Y Z, et al. Pressure dynamic analysis of shale gas reservoirs considering stress sensitivity and complex migration. Lithologic Reservoirs, 2019, 31(4):149-156.
[7] 余川, 周洵, 方光建, 等. 地层温压条件下页岩吸附性能变化特征:以渝东北地区龙马溪组为例. 岩性油气藏, 2018, 30(6):10-17. YU C, ZHOU X, FANG G J, et al. Adsorptivity of shale under the formation temperature and pressure:a case of Longmaxi Formation in northeastern Chongqing. Lithologic Reservoirs, 2018, 30(6):10-17.
[8] CIVAN F, RAI C S, SONDERGELD C H. Shale-gas permeability and diffusivity inferred by improved formulation of relevant retention and transport mechanisms. Transport in Porous Media, 2011, 86(3):925-944.
[9] CIVAN F, RAI C S, SONDERGELD C H. Determining shale permeability to gas by simultaneous analysis of various pressure tests. SPE Journal, 2012, 17(3):717-726.
[10] CHEN X J, YAO G Q. An improved model for permeability estimation in low permeable porous media based on fractal geometry and modified Hagen-Poiseuille flow. Fuel, 2017, 210:748-757.
[11] 吴克柳, 李相方, CHEN Z X.页岩气纳米孔真实气体传输模型.中国科学:技术科学, 2016, 46(1):68-78. WU K L, LI X F, CHEN Z X. Real gas transport through nanopores of shale gas reservoirs. Scientia Sinica Technologica, 2016, 46(1):68-78.
[12] FATHI E, AKKUTLU I Y. Lattice Boltzmann method for simulation of shale gas transport in kerogen. SPE Journal, 2013, 18(1):27-37.
[13] 姚军, 赵建林, 张敏, 等. 基于格子Boltzmann方法的页岩气微观流动模拟. 石油学报, 2015, 36(10):1280-1289. YAO J, ZHAO J L, ZHANG M, et al. Microscale shale gas flow simulation based on Lattice Boltzmann method. Acta Petrolei Sinica, 2015, 36(10):1280-1289.
[14] 申林方, 王志良, 李邵军. 基于格子博尔兹曼方法表征体元尺度土体细观渗流场的数值模拟. 岩土力学, 2015, 36(增刊2):689-694. SHEN L F, WANG Z L, LI S J. Numerical simulation for mesoscopic seepage field of soil based on lattice Boltzmann method at REV scale. Rock and Soil Mechanics, 2015, 36(Suppl 2):689-694.
[15] ZHAO J Z, FU D Y, LI Y M, et al. REV-scale simulation of gas transport in shale matrix with lattice Boltzmann method. Journal of Natural Gas Science and Engineering, 2018, 57(1):224-237.
[16] GUO Z L, ZHAO T S. Lattice Boltzmann model for incompressible flows through porous media. Physical Review E, 2002, 66(3):162-173.
[17] ZHAO T Y, ZHAO H W, NING Z F, et al. Permeability prediction of numerical reconstructed multiscale tight porous media using the representative elementary volume scale lattice Boltzmann method. International Journal of Heat and Mass Transfer, 2018, 118(1):368-377.
[18] 张烈辉, 贾鸣, 郭晶晶. 基于REV尺度格子Boltzmann方法的页岩气流动数值模拟. 力学与实践, 2017, 39(2):130-134. ZHANG L H, JIA M, GUO J J. Numerical simulation of shale gas flow based on the lattice Boltzmann method at REV scale. Mechanics in Engineering, 2017, 39(2):130-134.
[19] ZHANG T, LI X F, WANG X Z, et al. Modelling the water transport behavior in organic-rich nanoporous shale with generalized lattice Boltzmann method. International Journal of Heat and Mass Transfer, 2018, 127(1):123-134.
[20] LIU L J, YAO J, ZHANG L, et al. REV-scale simulation of microfractured unconventional gas reservoir. Journal of Natural Gas Science and Engineering, 2017, 48(1):100-110.
[21] LIU X H, LIU H, LIU Y Z. Theory and application of lattice Boltzmann method. Applied Mechanics and Materials, 2011, 79(1):270-275.
[22] REN J J, GUO P, GUO Z L, et al. A lattice Boltzmann model for simulating gas flow in Kerogen pores. Transport in Porous Media, 2015, 106(2):285-301.
[23] GUO Z L, SHU C. Lattice Boltzmann method and its applications in engineering. Singapore:World Scientific, 2013.
[24] FATHI E, TINNI A, AKKUTLU I Y. Correction to Klinkenberg slip theory for gas flow in nano-capillaries. International Journal of Coal Geology, 2012, 103(23):51-59.
[25] ZHOU L, QU Z G, CHEN L, et al. Lattice Boltzmann simulation of gas-solid adsorption processes at pore scale level. Journal of Computational Physics, 2015, 300(1):800-813.
[26] ROY S, RAJU R, CHUANG H F, et al. Modeling gas flow through microchannels and nanopores. Journal of Applied Physics, 2003, 93(8):4870-4879.
[27] 朱汉卿, 贾爱林, 位云生, 等. 基于氩气吸附的页岩纳米级孔隙结构特征. 岩性油气藏, 2018, 30(2):77-84. ZHU H Q, JIA A L, WEI Y S, et al. Nanopore structure characteristics of shale based on Ar adsorption. Lithologic Reservoirs, 2018, 30(2):77-84.
[28] SHENG M, LI G S, HUANG Z W, et al. Pore-scale modeling and analysis of surface diffusion effects on shale-gas flow in Kerogen pores. Journal of Natural Gas Science and Engineering, 2015, 27(4):979-985.
[29] 李冬冬, 张艳玉, 孙晓飞, 等. 考虑表面扩散的实际状态页岩气表观渗透率新模型. 中国石油大学学报(自然科学版), 2018, 42(4):82-90. LI D D, ZHANG Y Y, SUN X F, et al. A new model for assessing apparent permeability of shale gas at real gas condition considering surface diffusion. Journal of China University of Petroleum(Edition of Natural Science), 2018, 42(4):82-90.
[30] 吴克柳, 李相方, 陈掌星.页岩气有机质纳米孔气体传输微尺度效应.天然气工业, 2016, 36(11):51-64. WU K L, LI X F, CHEN Z X. Micro-scale effects of gas transport in organic nanopores of shale gas reservoirs. Natural Gas Industry, 2016, 36(11):51-64.
[1] 贾永禄,孙高飞,聂仁仕,李建明,李海科. 四重介质油藏渗流模型与试井曲线[J]. 岩性油气藏, 2016, 28(1): 123-127.
[2] 瞿建华,王泽胜,任本兵,白雨,王斌. 准噶尔盆地环玛湖斜坡区异常高压成因机理分析及压力预测方法[J]. 岩性油气藏, 2014, 26(5): 36-39.
[3] 叶安平,郭平,王绍平,徐艳梅,程忠钊. 多孔介质高温高压多组分气体-原油分子扩散系数研究[J]. 岩性油气藏, 2012, 24(5): 111-115.
[4] 南珺祥, 王素荣, 姚卫华, 卢燕. 鄂尔多斯盆地陇东地区延长组长6 — 8低渗透储层微裂缝研究[J]. 岩性油气藏, 2007, 19(4): 40-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[9] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .
[10] 王大兴,于波,张盟勃,宋琛. 地震叠前分析技术在子洲气田的研究与应用[J]. 岩性油气藏, 2008, 20(1): 95 -100 .