岩性油气藏 ›› 2020, Vol. 32 ›› Issue (5): 170–176.doi: 10.12108/yxyqc.20200518

• 石油工程 • 上一篇    

顺北油田缝内转向压裂暂堵剂评价实验

张雄1, 王晓之2,3, 郭天魁3, 赵海洋1, 李兆敏3, 杨斌4, 曲占庆3   

  1. 1. 中国石化西北油田分公司 石油工程技术研究院, 乌鲁木齐 830011;
    2. 中国石化天然气分公司, 北京 100020;
    3. 中国石油大学 (华东)石油工程学院, 山东 青岛 266580;
    4. 中国石化胜利油田分公司 科技处, 山东 东营 257000
  • 收稿日期:2019-12-05 修回日期:2020-04-16 出版日期:2020-10-01 发布日期:2020-08-08
  • 第一作者:张雄(1986-),男,硕士,工程师,主要从事酸化压裂方面的研究工作。地址:(830011)新疆乌鲁木齐市新市区长春南路466号中国石化西北油田分公司石油工程技术研究院。Email:zhangnoland@163.com。
  • 基金资助:
    国家自然科学基金项目“热储层水力压裂低温诱导热应力致裂机理研究”(编号:51874338)、中国石化重大科技攻关项目“顺北一区采输关键技术研究与应用”(编号:P18022-001)和山东省自然科学基金项目“增强型地热系统(EGS)低温诱导热应力致裂机理研究”(编号:ZR201702180073)联合资助

Experiment on evaluation of temporary plugging agent for in-fracture steering fracturing in Shunbei oilfield

ZHANG Xiong1, WANG Xiaozhi2,3, GUO Tiankui3, ZHAO Haiyang1, LI Zhaomin3, YANG Bin4, QU Zhanqing3   

  1. 1. Research Institute of Petroleum Engineering and Technology, Northwest Oilfield Company, Sinopec, Urumqi 830011, China;
    2. Sinopec Tianranqi Company, Beijing 100020, China;
    3. School of Petroleum Engineering, China University of Petroleum(East China), Qingdao 266580, Shandong, China;
    4. Department of Technology, Shengli Oilfield Company, Sinopec, Dongying 257000, Shandong, China
  • Received:2019-12-05 Revised:2020-04-16 Online:2020-10-01 Published:2020-08-08

摘要: 缝内暂堵压裂是开发断溶体油藏的关键技术之一,该工艺可以使新裂缝在已压出裂缝的其他位置起裂,从而大幅度提高井周弱势通道的动用程度,增加裂缝复杂度,达到增产的目的。顺北油田奥陶系油藏埋深大,缝洞特征明显,温度可达到160℃,导致普通可降解型堵剂快速失效,为此优选了一种油溶性树脂粉,开发了一种自降解颗粒。基于桥堵机理明确了粒径配比和有效暂堵厚度要求,对堵剂稳定性及高温下的降解、吸水后的膨胀情况进行了评价;通过改进的驱替装置对堵剂在裂缝中形成的暂堵隔板强度进行了评价;最后反向注入,记录解堵情况。实验结果表明:油溶性树脂粉不溶于水和酸、碱,但任何温度下都可溶于油,厚度为14 cm的油溶性树脂粉暂堵隔板在不同粒径颗粒质量比为1.0:2.0:2.3时,可耐受10 MPa的压力;A型自降解颗粒不溶于酸、碱、盐,且不溶于油,在高温油相或水相中均可自我降解,厚度为16 cm的A型自降解颗粒暂堵隔板在不同粒径自降解颗粒质量比为1.0:1.3时,可耐受10 MPa的压力。该研究成果为顺北油田提供了2种暂堵压裂时使用的暂堵剂。

关键词: 暂堵压裂, 暂堵剂, 颗粒暂堵, 暂堵强度评价, 物理模型试验, 顺北油田

Abstract: Temporary plugging and fracturing in fractures is one of the key technologies for the development of fault-karst reservoirs. This technology can make new fractures break at other places where the fractures have been pressed out,so as to greatly improve the utilization degree of weak channels around the well,increase the fracture complexity,and achieve the purpose of increasing production. The Ordovician reservoir in Shunbei oilfield has a deep buried depth,obvious fracture and hole characteristics,and the temperature can reach 160℃,which leads to the rapid failure of common degradable plugging agent. Therefore,an oil-soluble resin powder was selected and a self degradable particle was developed. Based on the mechanism of bridge plugging,the requirements of particle size ratio and effective temporary plugging thickness were defined,and the stability of plugging agent,degradation at high temperature and expansion after water absorption were evaluated. The strength of temporary plugging diaphragm formed by plugging agent in fractures was evaluated through improved displacement device. Finally, reverse injection was carried out to record the plugging removal. The results show that the oil-soluble resin powder is insoluble in water,acid and alkali,but soluble in oil at any temperature. When the mass ratio of particles with different sizes is 1.0:2.0:2.3,the oil-soluble resin powder temporary plugging partition with a thickness of 14 cm can withstand 10 MPa pressure. A-type self degradable particles are insoluble in acid,alkali,salt and oil, and can self degrade in high-temperature oil or water phase. The A-type self degradable particles temporary plugging diaphragm with a thickness of 16 cm can withstand 10 MPa pressure when the mass ratio of different particles is 1.0:1.3. The research results can provide two kinds of temporary plugging agents for Shunbei oilfield.

Key words: temporary plugging and fracturing, temporary plugging agent, temporary blockage of particles, temporary plugging strength evaluation, physical model test, Shunbei oilfield

中图分类号: 

  • TE355
[1] 胡浩.基于砂体结构的剩余油挖潜调整措施研究.岩性油气藏, 2016, 28(4):113-120. HU H. Research on adjustment measures of residual oil tapping potential based on sand body structure. Lithologic Reservoirs, 2016, 28(4):113-120.
[2] 曾源, 陈世加, 李士祥, 等.鄂尔多斯盆地正宁地区长8油层组储层特征.岩性油气藏, 2017, 29(6):32-42. ZENG Y, CHEN S J, LI S X, et al. Reservoir characteristics of the Chang 8 oil-bearing formation in Zhengning area, Ordos Basin. Lithologic Reservoirs, 2017, 29(6):32-42.
[3] 张保康, 徐国瑞, 铁磊磊, 等. "堵水+调剖"工艺参数优化和油藏适应性评价:以渤海SZ36-1油田为例.岩性油气藏, 2017, 29(5):155-161. ZHANG B K, XU G R, TIE L L, et al. Process parameter optimization and reservoir adaptability evaluation of "water blocking+profile control":Taking Bohai SZ36-1 Oilfield as an Example. Lithologic Reservoirs, 2017, 29(5):155-161.
[4] 蒋建方, 翟晓鹏, 贺甲元, 等.绒囊暂堵剂在深层碳酸盐岩储层转向压裂中的应用.天然气工业, 2019, 39(12):81-87. JIANG J F, ZHAI X P, HE J Y, et al. Application of temporary plugging agent of fluffy capsule in steering fracturing of deep carbonate reservoir. Natural Gas Industry, 2019, 39(12):81-87.
[5] 耿义兰, 张兴平.可使油田增产的酸液暂堵新技术.国外油田工程, 2009, 25(5):7-8. GENG Y L, ZHANG X P. New technology for temporarily blocking acid production in oil fields. Foreign Oilfield Engineering, 2009, 25(5):7-8.
[6] 张晓娟.高含水油井选择性酸化技术研究.大庆:东北石油大学, 2011. ZHANG X J. Study on selective acidification technology of high water-containing oil wells. Daqing:Northeast Petroleum University, 2011.
[7] 蔡志凤.朝阳沟油田注水井化学自适应暂堵转向酸化技术研究.大庆:东北石油大学, 2013. CAI Z F. Study on chemical adaptive temporary plugging and acidizing technology for injection wells in Chaoyanggou Oilfield. Daqing:Northeast Petroleum University, 2013.
[8] 何仲, 刘金华, 方静, 等.超高温屏蔽暂堵剂SMHHP的室内实验研究.钻井液与完井液, 2017, 34(6):18-23. HE Z, LIU J H, FANG J, et al. Laboratory experimental study of ultra-high temperature shielding temporary plugging agent SMHHP. Drilling Fluid and Completion Fluid, 2017, 34(6):18-23.
[9] 鄢宇杰, 汪淑敏, 李永寿, 等.裂缝型碳酸盐岩纤维降滤失实验研究及应用.断块油气田, 2017, 24(4):574-577. YAN Y J, WANG S M, LI Y S, et al. Experimental study and application of fluid loss reduction of fractured carbonate rocks. Fault-Block Oil and Gas Field, 2017, 24(4):574-577.
[10] 冯乐蒙.川东北碳酸盐岩储层酸压改造复合暂堵技术研究. 成都:成都理工大学, 2015. FENG L M. Study on composite temporary plugging technology for acid pressure reconstruction of carbonate reservoirs in northeast Sichuan. Chengdu:Chengdu University of Technology, 2015.
[11] 薛世杰, 程兴生, 李永平, 等.一种复合暂堵剂在重复压裂中的应用.钻采工艺, 2018, 41(3):96-98. XUE S J, CHENG X S, LI Y P, et al. Application of a compound temporary plugging agent in Refracturing. Drilling & Production Technology, 2018, 41(3):96-98.
[12] 陈宇豪, 王克亮, 李根, 等.大粒径调剖颗粒封堵机理及深部运移性能评价.岩性油气藏, 2019, 31(1):159-164. CHEN Y H, WANG K L, LI G, et al. Sealing mechanism of large particle size profile control and evaluation of deep migration performance. Lithologic Reservoirs, 2019, 31(1):159-164.
[13] 杜娟, 刘平礼, 赵立强, 等.非均质储层酸化用醋酸纤维暂堵剂.钻井液与完井液, 2012, 29(5):77-78. DU J, LIU P L, ZHAO L Q, et al. Acetate fiber temporary plugging agent for acidification of heterogeneous reservoir. Drilling Fluid and Completion Fluid, 2012, 29(5):77-78.
[14] 梅艳.复杂低压碳酸盐岩储层纤维暂堵酸压模型研究.西安:西安石油大学, 2014. MEI Y. Study on the temporary plugging acid pressure model of complex low-pressure carbonate reservoir. Xi'an:Xi'an Shiyou University, 2014.
[15] 杨乾龙. 裂缝性碳酸盐岩水平井纤维暂堵转向酸化技术研究.成都:西南石油大学, 2015. YANG Q L. Study on the technology of temporary blockage and acidification of horizontal wells in fractured carbonate rocks. Chengdu:Southwest Petroleum University, 2015.
[16] 任晓娟, 李晓骁, 鲁永辉, 等.改进型HV高强度凝胶堵水体系的应用.岩性油气藏, 2018, 30(5):131-137. REN X J, LI X X, LU Y H, et al. Application of improved HV high-strength gel water shutoff system. Lithologic Reservoirs, 2018, 30(5):131-137.
[17] ABEDI L M, VAFAIE S M, BAGHBAN S A, et al. Gelation time of hexamethylenetetra-mine polymer gels used in water shutoff treatment. Journal of Petroleum Science and Technology, 2012, 2(2):3-11.
[18] RAFIPOOR M, SEFTI M V, SALIMI F, et al. Investigation of rheological properties of polyacrylamide/chromium triacetate hydrogels performed for water shutoff treatment in oil reservoirs. Journal of Dispersion Science & Technology, 2014, 35(1):56-63.
[19] GUO T K, ZHANG S C, QU Z Q, et al. Experimental study of hydraulic fracturing for shale by stimulated reservoir volume. Fuel, 2014, 128:373-380.
[20] GUO T K, ZHANG S C, GE H K, et al. A new method for evaluation of fracture network formation capacity of rock. Fuel, 2015, 140:778-787.
[1] 苏皓, 郭艳东, 曹立迎, 喻宸, 崔书岳, 卢婷, 张云, 李俊超. 顺北油田断控缝洞型凝析气藏衰竭式开采特征及保压开采对策[J]. 岩性油气藏, 2024, 36(5): 178-188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[2] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[3] 李云,时志强. 四川盆地中部须家河组致密砂岩储层流体包裹体研究[J]. 岩性油气藏, 2008, 20(1): 27 -32 .
[4] 蒋韧,樊太亮,徐守礼. 地震地貌学概念与分析技术[J]. 岩性油气藏, 2008, 20(1): 33 -38 .
[5] 邹明亮,黄思静,胡作维,冯文立,刘昊年. 西湖凹陷平湖组砂岩中碳酸盐胶结物形成机制及其对储层质量的影响[J]. 岩性油气藏, 2008, 20(1): 47 -52 .
[6] 王冰洁,何生,倪军娥,方度. 板桥凹陷钱圈地区主干断裂活动性分析[J]. 岩性油气藏, 2008, 20(1): 75 -82 .
[7] 陈振标,张超谟,张占松,令狐松,孙宝佃. 利用NMRT2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 20(1): 105 -110 .
[8] 张厚福,徐兆辉. 从油气藏研究的历史论地层-岩性油气藏勘探[J]. 岩性油气藏, 2008, 20(1): 114 -123 .
[9] 张 霞. 勘探创造力的培养[J]. 岩性油气藏, 2007, 19(1): 16 -20 .
[10] 杨午阳, 杨文采, 刘全新, 王西文. 三维F-X域粘弹性波动方程保幅偏移方法[J]. 岩性油气藏, 2007, 19(1): 86 -91 .