岩性油气藏 ›› 2020, Vol. 32 ›› Issue (5): 170–176.doi: 10.12108/yxyqc.20200518

• 石油工程 • 上一篇    

顺北油田缝内转向压裂暂堵剂评价实验

张雄1, 王晓之2,3, 郭天魁3, 赵海洋1, 李兆敏3, 杨斌4, 曲占庆3   

  1. 1. 中国石化西北油田分公司 石油工程技术研究院, 乌鲁木齐 830011;
    2. 中国石化天然气分公司, 北京 100020;
    3. 中国石油大学 (华东)石油工程学院, 山东 青岛 266580;
    4. 中国石化胜利油田分公司 科技处, 山东 东营 257000
  • 收稿日期:2019-12-05 修回日期:2020-04-16 出版日期:2020-10-01 发布日期:2020-08-08
  • 作者简介:张雄(1986-),男,硕士,工程师,主要从事酸化压裂方面的研究工作。地址:(830011)新疆乌鲁木齐市新市区长春南路466号中国石化西北油田分公司石油工程技术研究院。Email:zhangnoland@163.com。
  • 基金资助:
    国家自然科学基金项目“热储层水力压裂低温诱导热应力致裂机理研究”(编号:51874338)、中国石化重大科技攻关项目“顺北一区采输关键技术研究与应用”(编号:P18022-001)和山东省自然科学基金项目“增强型地热系统(EGS)低温诱导热应力致裂机理研究”(编号:ZR201702180073)联合资助

Experiment on evaluation of temporary plugging agent for in-fracture steering fracturing in Shunbei oilfield

ZHANG Xiong1, WANG Xiaozhi2,3, GUO Tiankui3, ZHAO Haiyang1, LI Zhaomin3, YANG Bin4, QU Zhanqing3   

  1. 1. Research Institute of Petroleum Engineering and Technology, Northwest Oilfield Company, Sinopec, Urumqi 830011, China;
    2. Sinopec Tianranqi Company, Beijing 100020, China;
    3. School of Petroleum Engineering, China University of Petroleum(East China), Qingdao 266580, Shandong, China;
    4. Department of Technology, Shengli Oilfield Company, Sinopec, Dongying 257000, Shandong, China
  • Received:2019-12-05 Revised:2020-04-16 Online:2020-10-01 Published:2020-08-08

摘要: 缝内暂堵压裂是开发断溶体油藏的关键技术之一,该工艺可以使新裂缝在已压出裂缝的其他位置起裂,从而大幅度提高井周弱势通道的动用程度,增加裂缝复杂度,达到增产的目的。顺北油田奥陶系油藏埋深大,缝洞特征明显,温度可达到160℃,导致普通可降解型堵剂快速失效,为此优选了一种油溶性树脂粉,开发了一种自降解颗粒。基于桥堵机理明确了粒径配比和有效暂堵厚度要求,对堵剂稳定性及高温下的降解、吸水后的膨胀情况进行了评价;通过改进的驱替装置对堵剂在裂缝中形成的暂堵隔板强度进行了评价;最后反向注入,记录解堵情况。实验结果表明:油溶性树脂粉不溶于水和酸、碱,但任何温度下都可溶于油,厚度为14 cm的油溶性树脂粉暂堵隔板在不同粒径颗粒质量比为1.0:2.0:2.3时,可耐受10 MPa的压力;A型自降解颗粒不溶于酸、碱、盐,且不溶于油,在高温油相或水相中均可自我降解,厚度为16 cm的A型自降解颗粒暂堵隔板在不同粒径自降解颗粒质量比为1.0:1.3时,可耐受10 MPa的压力。该研究成果为顺北油田提供了2种暂堵压裂时使用的暂堵剂。

关键词: 暂堵压裂, 暂堵剂, 颗粒暂堵, 暂堵强度评价, 物理模型试验, 顺北油田

Abstract: Temporary plugging and fracturing in fractures is one of the key technologies for the development of fault-karst reservoirs. This technology can make new fractures break at other places where the fractures have been pressed out,so as to greatly improve the utilization degree of weak channels around the well,increase the fracture complexity,and achieve the purpose of increasing production. The Ordovician reservoir in Shunbei oilfield has a deep buried depth,obvious fracture and hole characteristics,and the temperature can reach 160℃,which leads to the rapid failure of common degradable plugging agent. Therefore,an oil-soluble resin powder was selected and a self degradable particle was developed. Based on the mechanism of bridge plugging,the requirements of particle size ratio and effective temporary plugging thickness were defined,and the stability of plugging agent,degradation at high temperature and expansion after water absorption were evaluated. The strength of temporary plugging diaphragm formed by plugging agent in fractures was evaluated through improved displacement device. Finally, reverse injection was carried out to record the plugging removal. The results show that the oil-soluble resin powder is insoluble in water,acid and alkali,but soluble in oil at any temperature. When the mass ratio of particles with different sizes is 1.0:2.0:2.3,the oil-soluble resin powder temporary plugging partition with a thickness of 14 cm can withstand 10 MPa pressure. A-type self degradable particles are insoluble in acid,alkali,salt and oil, and can self degrade in high-temperature oil or water phase. The A-type self degradable particles temporary plugging diaphragm with a thickness of 16 cm can withstand 10 MPa pressure when the mass ratio of different particles is 1.0:1.3. The research results can provide two kinds of temporary plugging agents for Shunbei oilfield.

Key words: temporary plugging and fracturing, temporary plugging agent, temporary blockage of particles, temporary plugging strength evaluation, physical model test, Shunbei oilfield

中图分类号: 

  • TE355
[1] 胡浩.基于砂体结构的剩余油挖潜调整措施研究.岩性油气藏, 2016, 28(4):113-120. HU H. Research on adjustment measures of residual oil tapping potential based on sand body structure. Lithologic Reservoirs, 2016, 28(4):113-120.
[2] 曾源, 陈世加, 李士祥, 等.鄂尔多斯盆地正宁地区长8油层组储层特征.岩性油气藏, 2017, 29(6):32-42. ZENG Y, CHEN S J, LI S X, et al. Reservoir characteristics of the Chang 8 oil-bearing formation in Zhengning area, Ordos Basin. Lithologic Reservoirs, 2017, 29(6):32-42.
[3] 张保康, 徐国瑞, 铁磊磊, 等. "堵水+调剖"工艺参数优化和油藏适应性评价:以渤海SZ36-1油田为例.岩性油气藏, 2017, 29(5):155-161. ZHANG B K, XU G R, TIE L L, et al. Process parameter optimization and reservoir adaptability evaluation of "water blocking+profile control":Taking Bohai SZ36-1 Oilfield as an Example. Lithologic Reservoirs, 2017, 29(5):155-161.
[4] 蒋建方, 翟晓鹏, 贺甲元, 等.绒囊暂堵剂在深层碳酸盐岩储层转向压裂中的应用.天然气工业, 2019, 39(12):81-87. JIANG J F, ZHAI X P, HE J Y, et al. Application of temporary plugging agent of fluffy capsule in steering fracturing of deep carbonate reservoir. Natural Gas Industry, 2019, 39(12):81-87.
[5] 耿义兰, 张兴平.可使油田增产的酸液暂堵新技术.国外油田工程, 2009, 25(5):7-8. GENG Y L, ZHANG X P. New technology for temporarily blocking acid production in oil fields. Foreign Oilfield Engineering, 2009, 25(5):7-8.
[6] 张晓娟.高含水油井选择性酸化技术研究.大庆:东北石油大学, 2011. ZHANG X J. Study on selective acidification technology of high water-containing oil wells. Daqing:Northeast Petroleum University, 2011.
[7] 蔡志凤.朝阳沟油田注水井化学自适应暂堵转向酸化技术研究.大庆:东北石油大学, 2013. CAI Z F. Study on chemical adaptive temporary plugging and acidizing technology for injection wells in Chaoyanggou Oilfield. Daqing:Northeast Petroleum University, 2013.
[8] 何仲, 刘金华, 方静, 等.超高温屏蔽暂堵剂SMHHP的室内实验研究.钻井液与完井液, 2017, 34(6):18-23. HE Z, LIU J H, FANG J, et al. Laboratory experimental study of ultra-high temperature shielding temporary plugging agent SMHHP. Drilling Fluid and Completion Fluid, 2017, 34(6):18-23.
[9] 鄢宇杰, 汪淑敏, 李永寿, 等.裂缝型碳酸盐岩纤维降滤失实验研究及应用.断块油气田, 2017, 24(4):574-577. YAN Y J, WANG S M, LI Y S, et al. Experimental study and application of fluid loss reduction of fractured carbonate rocks. Fault-Block Oil and Gas Field, 2017, 24(4):574-577.
[10] 冯乐蒙.川东北碳酸盐岩储层酸压改造复合暂堵技术研究. 成都:成都理工大学, 2015. FENG L M. Study on composite temporary plugging technology for acid pressure reconstruction of carbonate reservoirs in northeast Sichuan. Chengdu:Chengdu University of Technology, 2015.
[11] 薛世杰, 程兴生, 李永平, 等.一种复合暂堵剂在重复压裂中的应用.钻采工艺, 2018, 41(3):96-98. XUE S J, CHENG X S, LI Y P, et al. Application of a compound temporary plugging agent in Refracturing. Drilling & Production Technology, 2018, 41(3):96-98.
[12] 陈宇豪, 王克亮, 李根, 等.大粒径调剖颗粒封堵机理及深部运移性能评价.岩性油气藏, 2019, 31(1):159-164. CHEN Y H, WANG K L, LI G, et al. Sealing mechanism of large particle size profile control and evaluation of deep migration performance. Lithologic Reservoirs, 2019, 31(1):159-164.
[13] 杜娟, 刘平礼, 赵立强, 等.非均质储层酸化用醋酸纤维暂堵剂.钻井液与完井液, 2012, 29(5):77-78. DU J, LIU P L, ZHAO L Q, et al. Acetate fiber temporary plugging agent for acidification of heterogeneous reservoir. Drilling Fluid and Completion Fluid, 2012, 29(5):77-78.
[14] 梅艳.复杂低压碳酸盐岩储层纤维暂堵酸压模型研究.西安:西安石油大学, 2014. MEI Y. Study on the temporary plugging acid pressure model of complex low-pressure carbonate reservoir. Xi'an:Xi'an Shiyou University, 2014.
[15] 杨乾龙. 裂缝性碳酸盐岩水平井纤维暂堵转向酸化技术研究.成都:西南石油大学, 2015. YANG Q L. Study on the technology of temporary blockage and acidification of horizontal wells in fractured carbonate rocks. Chengdu:Southwest Petroleum University, 2015.
[16] 任晓娟, 李晓骁, 鲁永辉, 等.改进型HV高强度凝胶堵水体系的应用.岩性油气藏, 2018, 30(5):131-137. REN X J, LI X X, LU Y H, et al. Application of improved HV high-strength gel water shutoff system. Lithologic Reservoirs, 2018, 30(5):131-137.
[17] ABEDI L M, VAFAIE S M, BAGHBAN S A, et al. Gelation time of hexamethylenetetra-mine polymer gels used in water shutoff treatment. Journal of Petroleum Science and Technology, 2012, 2(2):3-11.
[18] RAFIPOOR M, SEFTI M V, SALIMI F, et al. Investigation of rheological properties of polyacrylamide/chromium triacetate hydrogels performed for water shutoff treatment in oil reservoirs. Journal of Dispersion Science & Technology, 2014, 35(1):56-63.
[19] GUO T K, ZHANG S C, QU Z Q, et al. Experimental study of hydraulic fracturing for shale by stimulated reservoir volume. Fuel, 2014, 128:373-380.
[20] GUO T K, ZHANG S C, GE H K, et al. A new method for evaluation of fracture network formation capacity of rock. Fuel, 2015, 140:778-787.
[1] 张健, 敬季昀, 王杏尊. 利用小型压裂短时间压降数据快速获取储层参数的新方法[J]. 岩性油气藏, 2018, 30(4): 133-139.
[2] 李南星, 张鹏, 郑锐, 马龙, 杨成亮. 气液两相嘴流新模型及应用[J]. 岩性油气藏, 2021, 33(3): 138-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .