岩性油气藏 ›› 2020, Vol. 32 ›› Issue (6): 85–96.doi: 10.12108/yxyqc.20200608

• 油气地质 • 上一篇    下一篇

沉积过路现象的地震识别特征及控制因素探讨

尚文亮1,2, 徐少华1,2, 蔡默仑3, 高红灿1,2, 李小刚1,2, 陈岑1,2, 蔡长娥1,2, 秦磊1,2   

  1. 1. 复杂油气田勘探开发重庆市重点实验室, 重庆 401331;
    2. 重庆科技学院 石油与天然气工程学院, 重庆 401331;
    3. 中国石油集团川庆钻探工程有限公司 地质勘探开发研究院, 成都 610051
  • 收稿日期:2020-04-08 修回日期:2020-05-07 出版日期:2020-12-01 发布日期:2020-10-30
  • 通讯作者: 徐少华(1987-),男,博士,讲师,主要从事层序地层学与沉积学方面的教学和研究工作。Email:xsh_xu@163.com。 E-mail:xsh_xu@163.com
  • 作者简介:尚文亮(1999-),男,研究方向为油气资源勘查。地址:(401331)重庆市沙坪坝区大学城东路20号重庆科技学院。Email:2890628632@qq.com
  • 基金资助:
    国家自然科学基金项目“陆架边缘三角洲体系供源速率的侧向差异对地层叠加样式的控制:以珠江口盆地SQ13.8为例”(编号:41902114)、重庆市自然科学基金面上项目“三角洲体系物源供给差异对层序构成样式的控制”(编号:cstc2019jcyj-msxmX-0719)和重庆科技学院大学生科技创新训练计划项目“基于地震正演模拟的低位体系域识别技术与应用”(编号:2019008)联合资助

Discussion on seismic identification characteristics and controlling factors of sediment bypass

SHANG Wenliang1,2, XU Shaohua1,2, CAI Molun3, GAO Hongcan1,2, LI Xiaogang1,2, CHEN Cen1,2, CAI Change1,2, QIN Lei1,2   

  1. 1. Chongqing Key Laboratory of Complex Oil & Gas Exploration and Development, Chongqing 401331, China;
    2. School of Petroleum Engineering, Chongqing University of Science & Technology, Chongqing 401331, China;
    3. Geological Exploration & Development Research Institute, CNPC Chuanqing Drilling Engineering Company Limited, Chengdu 610051, China
  • Received:2020-04-08 Revised:2020-05-07 Online:2020-12-01 Published:2020-10-30

摘要: 目前对沉积过路现象的研究大多停留在对陆架或陆坡内的无沉积现象作简单的说明,而对于沉积过路的主控因素尚不明确。通过收集国内外沉积过路的实例,并对不同案例进行对比分析,明确沉积过路在地震上的识别标志,并探明沉积过路的主控因素。结果表明: ①沉积过路代表着沉积间断,在地震上表现为顶底地层的地震反射同相轴合并。②沉积过路多发生在非均衡陆坡之上,非均衡陆坡内的不同可容纳空间(池状可容纳空间、愈合陆坡可容纳空间及陆坡可容纳空间)充填阶段为沉积过路提供了潜在过路区。③沉积物粒度、浓度、流体流量及地形坡度决定沉积物能否过路。其中,沉积物粒度与流体流量是影响浊流过路的主要因素,沉积物浓度是影响碎屑流过路的主要因素。④坡度对沉积过路的控制作用体现在相邻地层的相对坡度比和绝对坡度差等2个方面。相对坡度比是沉积过路作用启动的重要条件。绝对坡度差决定沉积过路的距离,绝对坡度差越小,沉积过路的距离越短;绝对坡度差越大,沉积过路的距离越长。该研究结果有助于加深对沉积物运输过程的理解与认识,对今后沉积过路现象的研究也具有借鉴意义。

关键词: 沉积过路, 非均衡陆坡, 可容纳空间, 相对坡度比

Abstract: At present,most of researches on sediment bypass are focused on explaining the non-deposition that occur in continental shelves or slopes,but the main controlling factors of sediment bypass are still not clear. By collecting domestic and foreign cases of sediment bypass and making comparative analysis on different cases, the identification signs of sediment bypass on seismic profiles and the main controlling factors of sediment bypass have been ascertained. The result shows:(1)Sediment bypass represents depositional break,and appears as the merging of seismic events of the top and bottom formation in seismic profile. (2)Sediment bypass mostly occurs on above-graded slope,and the filling stages of different accommodation spaces(ponded-basin accommodation space,healed-slope accommodation space and slope accommodation space)in above-graded slope provide potential areas for sediment bypass.(3)Sediment grain size,concentration,fluid flow,and slope determine whether the sediment can pass by. Among them,sediment grain size and fluid flow are the main factors that affect the turbidity currents bypass. Sediment concentration is the main factor that affects the debris flow. (4)The controlling effect of slope on sediment bypass is reflected in two aspects:absolute gradient difference and relative slope ratio of adjacent formation. Relative slope ratio is an important condition for the start of sediment bypass. The absolute slope difference determines the distance of sediment bypass. The smaller the absolute gradient difference is,the shorter the bypass distance is;the larger the absolute gradient difference is,the longer the bypass distance is. This research is helpful to deepen the understanding and knowledge about the sediment transport process,and also has reference for future research of sediment bypass.

Key words: sediment bypass, above-graded slope, accommodation space, relative slope ratio

中图分类号: 

  • P512.2
[1] SLOOS L L. Sequences in the cratonic interior of North America. Geological Society of America Bulletin, 1963, 74(2):93-114.
[2] WHEELER H E. Baselevel, lithosphere surface, and time-stratigraphy. Geological Society of America Bulletin, 1964, 75(7):599-610.
[3] CROSS T A. Stratigraphy controls on reservoir attributes in continental strata. Earth Science Frontiers, 2000, 7(4):322-350.
[4] 李江涛, 李增学, 郭建斌, 等.高分辨率层序地层分析中基准面变化的讨论.沉积学报, 2005, 23(2):297-302. LI J T, LI Z X, GUO J B, et al. Discussion about base-level changes in the analysis of high-resolution sequence stratigraphy. Acta Sedimentologica Sinica, 2005, 23(2):297-302.
[5] 吴因业, 朱如凯, 罗平, 等.沉积学与层序地层学研究新进展:第18届国际沉积学大会综述. 沉积学报, 2011, 29(1):199-206. YU Y Y, ZHU R K, LUO P, et al. Advance on sedimentology and sequence stratigraphy:a summary from 18th International Sedimentology Congress. Acta Sedimentologica Sinica, 2011, 29(1):199-206.
[6] 辛仁臣, 王英民, 冯志强, 等.松辽盆地中央坳陷区西部重力流沉积特征及其成因模式.地球学报, 2003, 24(增刊1):58-63. XIN R C, WANG Y M, FENG Z Q, et al. Sediments gravity flow sedimentary characteristics and its genetic models of the western part of center depression region, Songliao Basin. Acta Geoscientica Sinica, 2003, 24(Suppl 1):58-63.
[7] 樊太亮, 郭齐军, 吴贤顺.鄂尔多斯盆地北部上古生界层序地层特征与储层发育规律.现代地质, 1999, 13(1):32-36. FAN T L, GUO Q J, WU X S. Features of sequence stratigraphy and distribution regularities of reservoir in Upper Paleozoic of north Ordos Basin. Geoscience, 1999, 13(1):32-36.
[8] 康洪全, 孟金落, 程涛, 等.巴西坎波斯盆地深水沉积体系特征.石油勘探与开发, 2018, 45(1):93-104. KANG H Q, MENG J L, CHENG T, et al. Characteristics of deep water depositional system in Campos basin, Brazil. Petroleum Exploration and Development, 2018, 45(1):93-104.
[9] STEVENSON C J, JACKSON C A L, HODGSON D M, et al. Deep-water sediment bypass. Journal of Sedimentary Research, 2015, 85:1058-1081.
[10] MULDER T, ALEXANDER J. Abrupt change in slope causes variation in the deposit thickness of concentrated particle-driven density currents. Marine Geology, 2001, 175:221-235.
[11] CASALBORE D, FALCINI F, MARTORELLI E, et al. Characterization of overbanking features on the lower reach of the GioiaMesima canyon-channel system (southern Tyrrhenian Sea) through integration of morpho-stratigraphic data and physical modelling. Progress in Oceanography, 2018, 169:66-78.
[12] ROUSE H. Modern conceptions of the mechanics or fluid turbulence. Transactions of the American Society of Civil Engineers, 1937, 102(1):463-505.
[13] LEEDER M R, GRAY T E, ALEXANDER J. Sediment suspension dynamics and a new criterion for the maintenance of turbulent suspensions. Sedimentology, 2005, 52:683-691.
[14] PANTIN H M, FRANKLIN M C. Predicting autosuspension in steady turbidity flow:Ignition points and their relation to Richardson Numbers. Journal of Sedimentary Research, 2009, 79:862-871.
[15] PAKER G. Conditions for the ignition of catastrophically erosive turbidity currents. Marine Geology, 1982, 46(3/4):307-327.
[16] 王海荣, 王英明, 邱燕, 等.南海东北部台湾浅滩陆坡的浊流沉积物波的发育及其成因的构造控制. 沉积学报, 2008, 26(1):39-45. WANG H R, WANG Y M, QIU Y, et al. Development and its tectonic activity's origin of turbidity current sediment wave in Manila Trench,the South China Sea. Acta Sedimentologica Sinica, 2008, 26(1):39-45.
[17] 王星星.南海珠江口外峡谷深水沉积作用及响应.杭州:浙江大学, 2019. WANG X X. Deep-water sedimentary processes and responses in the pearl River Canyon, South China Sea. Hangzhou:Zhejiang University, 2019.
[18] 刘豪, 王英民, 王媛.浅海陆棚环境下沉积坡折带及其对局部强制海退体系域的控制.沉积学报, 2011, 29(5):906-916. LIU H, WANG Y M, WANG Y. Depositional slope break in shallow marine shelf setting and its control on regional forced regressive wedge systems tract. Acta Sedimentologica Sinica, 2011, 29(5):906-916.
[19] PAUMARD V, BOURGET J, PAYENBERG T, et al. Shelfmargin architecture and shoreline processes at the shelf-edge:Controls on sediment partitioning and prediction of deep-water deposition style. ASEG Extended Abstracts, 2018:1-6.
[20] 任梦怡, 江青春, 刘震, 等.南堡凹陷柳赞地区沙三段层序结构及其构造响应.岩性油气藏, 2020, 32(3):93-103. REN M Y, JIANG Q C, LIU Z, et al. Sequence architecture and structural response of the third member of Shahejie Formation in Liuzan area, Nanpu Sag. Lithologic Reservoirs, 2020, 32(3):93-103.
[21] 洪亮, 陈彬滔, 刘雄志, 等. Muglad盆地Kaikang槽西斜坡沉积演化及其油气地质意义.岩性油气藏, 2019, 31(2):8-15. HONG L, CHEN B T, LIU X Z, et al. Sedimentary evolution and its significances for petroleum exploration in the west slope of Kaikang trough, Muglad Basin, Sudan-South Sudan. Lithologic Reservoirs, 2019, 31(2):8-15.
[22] 王嗣敏, 刘招君.高分辨率层序地层学在陆相地层研究中若干问题的讨论.地层学杂志, 2004, 28(2):179-184. WANG S M, LIU Z J. Discussion on some problems of highresolution sequence stratigraphy in the study of continental stratigraphy. Journal of Stratigraphy, 2004, 28(2):179-184.
[23] 邓宏文.美国层序地层研究中的新学派:高分辨率层序地层学.石油与天然气地质, 1995, 16(2):89-97. DENG H W. A new school of thought in sequence stratigraphic studies in US:High-resolution sequence stratigraphy. Oil & Gas Geology, 1995, 16(2):89-97.
[24] 邓宏文.高分辨率层序地层学应用中的问题探析.古地理学报, 2009, 11(5):471-480. DENG H W. Discussion on problems of applying high resolution sequence stratigraphy. Journal of Palaeogeography, 2009, 11(5):471-480.
[25] 岳文浙, 丁保良, 魏乃颐.陆盆层序地层研究的思路.地质论评, 2000, 46(4):347-354. YUE W Z, DING B L, WEI N Y. Thoughts on the study of continental sequence stratigraphy. Geological Review, 2000, 46(4):347-354.
[26] 郑荣才, 尹世民, 彭军.基准面旋回结构与叠加样式的沉积动力学分析.沉积学报, 2000, 18(3):369-375. ZHENG R C, YIN S M,PENG J. Sedimentary dynamic analysis of sequence structure and stacking pattern of base-level cycle. Acta Sedimentologica Sinica, 2000, 18(3):369-375.
[27] 何玉平, 刘招君, 杜江峰.高分辨率层序地层学基准面旋回识别.世界地质, 2003, 22(1):21-25. HE Y P, LIU Z J, DU J F. Recognition of Base-level cycle in high-resolution sequence stratigraphy. Global Geology, 2003, 22(1):21-25
[28] 孙辉, 刘少治, 吕福亮, 等.东非鲁武马盆地渐新统富砂深水朵体复合体特征及影响因素. 地质学报, 2019, 93(5):1154-1165. SUN H, LIU S Z, LYU F L, et al. Sedimentary characteristics and influential factors of Oligocene deep water sand-rich lobe complex in the Rovuma Basin, East Africa. Acta Geologic Sinica, 2019, 93(5):1154-1165.
[29] 庞雄, 朱明, 柳保军, 等.南海北部珠江口盆地白云凹陷深水区重力流沉积机理.石油学报, 2014, 35(4):646-653. PANG X, ZHU M, LIU B J, et al. The mechanism of gravity flow deposition in Baiyun sag deepwater area of the northern South China Sea. Acta Petrolei Sinica, 2014, 35(4):646-653.
[30] 李林, 曲永强, 孟庆任, 等. 重力流沉积:理论研究与野外识别.沉积学报, 2011, 29(4):677-688. LI L, QU Y Q, MENG Q R, et al. Gravity flow sedimentation:Theoretical studies and field identification. Acta Sedimentologica Sinica, 2011, 29(4):677-688.
[31] MUTTI E, NORMARK W R. Comparing examples of modern and ancient turbidite systems:Problems and concepts. Marine Clastic Sedimentology, 1987:1-38.
[32] MAYALL M, JONES E, CASEY M. Turbidite channel reservoirs:Key elements in facies prediction and effective development. Marine and Petroleum Geology, 2006, 23:821-841.
[33] HUBBARD S M, COVAULT J A, FILDANI A, et al. Sediment transfer and deposition in slope channels:Deciphering the record of enigmatic deep-sea processes from outcrop. Geological Society of America Bulletin, 2014, 126(5-6):857-871.
[34] CALLOW R H T, KNELLER B, DYKSTRA M, et al. Physical, biological, geochemical and sedimentological controls on the ichnology of submarine canyon and slope channel systems. Marine and petroleum geology, 2014, 54:144-166.
[35] STEVENSON C J, TALLING P J, WYNN R B, et al. The flows that left no trace:Very large-volume turbidity currents that bypassed sediment through submarine channels without eroding the sea floor. Marine and Petroleum Geology, 2013, 41:186-205.
[36] GONG C L, STEEL R J, WANG Y M, et al. Shelf-edge delta overreach at the shelf break can guarantee the delivery of terrestrial sediments to deep water at all sea-level stands. AAPG Bulletin, 2019, 103(1):65-90.
[37] 刘汉尧, 林畅松, 张忠涛, 等.珠江口盆地白云凹陷北坡第四纪层序地层和沉积体系演化及其控制因素.海洋地质与第四纪地质, 2019, 39(1):25-37. LIU H Y, LIN C S, ZHANG Z T, et al. Quaternary sequence stratigraphic evolution of the Pearl River Mouth Basin and controlling factors over depositional systems. Marine Geology & Quaternary Geology, 2019, 39(1):25-37.
[38] 李磊, 王英民, 张莲美, 等.尼日尔三角洲下陆坡限定性重力流沉积过程及响应.中国科学:地球科学, 2010, 40(11):1591-1597. LI L, WANG Y M, ZHANG L M, et al. Confined gravity flow sedimentary process and its impact on the lower continental slope, Niger Delta. Scientia Sinica(Terrae), 2010, 40(11):1591-1597.
[39] PRATHER B E. Controls on reservoir distribution,architecture and stratigraphic trapping in slope settings. Marine and Petroleum Geology, 2003, 20:529-545.
[40] PRATHER B E, BYNRE O C, PIREMEZ C, et al. Sediment partitioning, continental slopes and base-of-slope systems. Basin Research, 2017, 29:394-416.
[41] 李磊, 王英民, 徐强, 等.南海北部陆坡地震地貌及深水重力流沉积过程主控因素. 中国科学:地球科学, 2012, 42(10):1533-1543. LI L, WANG Y M, XU Q, et al. Seismic geomorphology and main controls of deep-water gravity flow sedimentary process on the slope of the northern South China Sea. Scientia Sinica(Terrae), 2012, 42(10):1533-1543.
[42] ROSS W C, HALLIWELL B A, MAY J A, et al. Slope readjustment:a new model for the development of submarine fans and aprons. Geology, 1994, 22:511-514.
[43] HEDBERG H D. Continental margins from viewpoint of the petroleum geologist. AAPG Bulletin, 1970, 54(1):3-43.
[44] OLAFIRANYE K, JACKSON C A L, HODGSON D M. The role of tectonics and mass-transport complex emplacement on upper slope stratigraphic evolution:a 3D seismic case study from offshore Angola. Marine and Petroleum Geology, 2013, 44:196-216.
[45] 蔺鹏, 吴胜和, 张佳佳, 等.尼日尔三角洲盆地陆坡逆冲构造区海底扇分布规律. 石油与天然气地质, 2018, 39(5):1073-1086. LIN P, WU S H, ZHANG J J, et al. Distribution of submarine fans in the thrust fault zone of continental slope, Niger Delta Basin. Oil & Gas Geology, 2018, 39(5):1073-1086.
[46] PRATHER B E, BOOTH J R, STEFFENS G S, et al. Classification, lithologic calibration, and stratigraphic succession of seismic facies of intraslope basins, deep-water Gulf of Mexico. AAPG Bulletin, 1998, 82(5 A):701-728.
[47] PRATHER B E. Calibration and visualization of depositional process models for above-grade slopes:a case study from the Gulf of Mexico. Marine and Petroleum Geology, 2000, 17:619-638.
[48] 高红灿, 郑荣才, 魏钦廉, 等.碎屑流与浊流的流体性质及沉积特征研究进展.地球科学进展, 2012, 27(8):815-827. GAO H C, ZHENG R C, WEI Q L, et al. Reviews on fluid properties and sedimentary characteristics of debris flows and turbidity currents. Advances in Earth Science, 2012, 27(8):815-827.
[49] 金杰华, 操应长, 王健, 等.深水砂质碎屑流沉积:概念、沉积过程与沉积特征.地质论评, 2019, 65(3):689-702. JIN J H, CAO Y C, WANG J, et al. Deep-water sandy debris flow deposits:concepts,sedimentary processes and characteristics. Geological Review, 2019, 65(3):689-702.
[50] POHL F, EGGENHUISEN J T, CARTIGNY M J B, et al. The influence of a slope break on turbidite deposits:an experimental investigation. Marine Geology, 2020, 424:106-160.
[1] 王航, 杨海风, 黄振, 白冰, 高雁飞. 基于可容纳空间变化的河流相演化新模式及其控藏作用——以莱州湾凹陷垦利A构造为例[J]. 岩性油气藏, 2020, 32(5): 73-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 旷红伟,高振中,王正允,王晓光. 一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J]. 岩性油气藏, 2008, 20(1): 8 -14 .
[2] 李国军, 郑荣才,唐玉林,汪洋,唐楷. 川东北地区飞仙关组层序- 岩相古地理特征[J]. 岩性油气藏, 2007, 19(4): 64 -70 .
[3] 蔡佳. 琼东南盆地长昌凹陷新近系三亚组沉积相[J]. 岩性油气藏, 2017, 29(5): 46 -54 .
[4] 章惠, 关达, 向雪梅, 陈勇. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏, 2018, 30(1): 133 -139 .
[5] 付广,刘博,吕延防. 泥岩盖层对各种相态天然气封闭能力综合评价方法[J]. 岩性油气藏, 2008, 20(1): 21 -26 .
[6] 马中良,曾溅辉,张善文,王永诗,王洪玉,刘惠民. 砂岩透镜体油运移过程模拟及成藏主控因素分析[J]. 岩性油气藏, 2008, 20(1): 69 -74 .
[7] 王英民. 对层序地层学工业化应用中层序分级混乱问题的探讨[J]. 岩性油气藏, 2007, 19(1): 9 -15 .
[8] 卫平生, 潘树新, 王建功, 雷 明. 湖岸线和岩性地层油气藏的关系研究 —— 论“坳陷盆地湖岸线控油”[J]. 岩性油气藏, 2007, 19(1): 27 -31 .
[9] 易定红, 石兰亭, 贾义蓉. 吉尔嘎朗图凹陷宝饶洼槽阿尔善组层序地层与隐蔽油藏[J]. 岩性油气藏, 2007, 19(1): 68 -72 .
[10] 杨占龙, 彭立才, 陈启林, 郭精义, 李在光, 黄云峰. 吐哈盆地胜北洼陷岩性油气藏成藏条件与油气勘探方向[J]. 岩性油气藏, 2007, 19(1): 62 -67 .