岩性油气藏 ›› 2025, Vol. 37 ›› Issue (2): 26–37.doi: 10.12108/yxyqc.20250203

• 地质勘探 • 上一篇    

陆相湖盆转换面与规模圈闭发育特征

杨占龙1,2, 李相博1,2, 沙雪梅1,2, 郝彬1,2   

  1. 1. 中国石油勘探开发研究院 西北分院, 兰州 730020;
    2. 中国石油集团油藏描述重点实验室, 兰州 730020
  • 收稿日期:2024-09-20 修回日期:2024-10-29 发布日期:2025-03-06
  • 第一作者:杨占龙(1970—),男,博士,高级工程师,主要从事沉积盆地油气地质特征综合评价与岩性油气藏勘探方法与技术研究。地址:(730020)甘肃省兰州市城关区雁儿湾路535号。Email:yang_zl@petrochina.com.cn。
  • 基金资助:
    国家自然科学基金“鄂尔多斯盆地延长组深水块状砂岩形成机理及沉积模式研究”(编号:41772099),中国石油天然气股份有限公司科技项目“吐哈盆地北部山前带综合地质研究”(编号:RIPED-2023-JS-2206)和“吐哈盆地前侏罗系综合地质研究”(编号:RIPED-2023-JS-2207)联合资助。

Transition surfaces and the characteristics of large-scale traps occurrence in lacustrine basins

YANG Zhanlong1,2, LI Xiangbo1,2, SHA Xuemei1,2, HAO Bin1,2   

  1. 1. PetroChina Research Institute of Petroleum Exploration & Development-Northwest, Lanzhou 730020, China;
    2. Key laboratory of Reservoir Description, China National Petroleum Corporation, Lanzhou 730020, China
  • Received:2024-09-20 Revised:2024-10-29 Published:2025-03-06

摘要: 通过对陆相湖盆填充的控制因素分析,并对不同阶段湖盆填充特征及演化过程的研究,梳理了转换面类型及其与规模圈闭的发育关系,明确了有利勘探领域。研究结果表明:①在构造活动与气候变化双重因素控制下,根据潜在可容纳空间与沉积物+水供给的相对平衡关系,湖盆可划分为过填充、平衡填充与欠填充3种类型,各类湖盆具有典型的生储盖组合特征。②陆相湖盆主要发育以下几种类型的转换面:在构造活动性质变化下形成的以不整合面为代表的构造转换面、沉积环境与沉积体系变化导致岩性差异为主的沉积转换面、不同层系生物群种属和丰度变化形成的生物转换面及湖盆水化学性质差异形成的地球化学转换面等。各类转换面之间具有一定依附隶属关系,构造转换面必然是沉积、生物与地球化学转换面;生物、地球化学转换面往往对应一定级别的沉积转换面,甚至是构造转换面,但沉积转换面并不一定是生物和地球化学转换面。③构造转换面主要反映不同湖盆填充阶段构造、地层规模圈闭的发育特征;沉积转换面控制的岩性、成岩及物性等圈闭主要反映单一湖盆填充阶段规模圈闭的发育特征;生物与地球化学转换面主要通过控制湖盆烃源岩的发育背景及其特征来影响湖盆内规模圈闭的发育。④发育不同类型规模圈闭的近岸水下扇、异重流、重力流等沉积体系为陆相湖盆的有利勘探领域。

关键词: 构造转换面, 沉积转换面, 地球化学转换面, 规模圈闭, 构造活动, 气候变化, 可容纳空间, 沉积物+水供给, 陆相湖盆

Abstract: Based on the analysis of the controlling factors of lacustrine basin infilling,considering the infilling features in different stages and the evolution of a whole lake basin,the transition surfaces and the developmental relationship between occurrence of large-scale traps and various transition surfaces were discussed. The results show that:(1)With the jointly controlling of tectonic activity and climate change,lake basins can be divided into three types,such as overfilled,balanced-fill,underfilled according to the relative balance of potential accommodation change with sediment + water supply and each stage has typical source-reservoir-cap assemblages.(2)Tectonic transition surfaces,mainly dominated by unconformity due to the change in tectonic activity,sedimentary transition surface,mainly caused by lithology variation due to the changes in environment and sedimentary system,and biological and geochemical transition surfaces,totally affected by the difference of biological species and abundances and chemical stratification of water,are widely developed in lacustrine basins. There is a certain dependency relationship between different types of transition surfaces. The tectonic transition surface is necessarily a sedimentary,biological,and geochemical transition surface. The biological and geochemical transition surfaces often correspond to sedimentary transition surface in certain level and even to the tectonic transition surface,but the sedimentary transition surface is not necessarily the biological and geochemical transition surfaces.(3)Tectonic transition surface mainly reflects the occurrence of tectonic and stratigraphic large-scale traps in different infilling stages. The lithological,diagenesis and physical properties traps controlled by sedimentary transition surface mainly reflect the large-scale traps occurrence in a single infilling stage. Biological and geochemical transition surfaces mainly affect the occurrence of large-scale traps by controlling the background and characteristics of source rocks of a lake.(4)Sedimentary systems with large-scale traps,such as nearshore underwater fans,hyperpycnal flow and gravity flow etc. are favorable potential exploration domains of lacustrine basins.

Key words: tectonic transition surfaces, sedimentary transition surface, geochemical transition surfaces, trap in large scale, tectonic activity, climate change, accommodation, sediment+water supply, lacustrine basin

中图分类号: 

  • TE121.3
[1] CALHOUN D R. Britannica book of the year 1999[M]. Chicago, Illinois:Encyclopedia Britannica,1999:920.
[2] HEDBERG H D. Significance of high-wax oils with respect to genesis of petroleum[J]. AAPG Bulletin,1969,53(7):1500-1502.
[3] POWELL T G. Petroleum geochemistry and depositional setting of lacustrine rocks[J]. Marine and Petroleum Geology,1986,3(3):200-219.
[4] SMITH M. Lacustrine oil shale in the geological record[M]//KATZ B J. Lacustrine basin exploration:Case studies and mod-ern analogues. Tulsa,Oklahoma:AAPG Memoir 50,1990:43-60.
[5] KATZ B J. Lacustrine source rock systems is the Green River Formation an appropriate analog?[J]. Geologiya i Geofizika, 1995,36(5):26-41.
[6] KELTS K. Environments of deposition of lacustrine petroleum source rocks:An introduction[J]. Geological Society London Special Publication,1988,40(1):3-26.
[7] SLADEN C P. Key elements during the search for hydrocarbons in lake systems[M]//GIERLOWSKI K E,KELTS K. Global geological record of lake basins,Vol. 1. Cambridge:Cambridge University Press,1994:3-17.
[8] BOHACS K M,CARROLLA R,NEAL J E,et al. Lake-basin type, source potential,and hydrocarbon character:an integrated-sequencestratigraphic-geochemical framework[M]//GIERLOWSKIKORDESCH E H,KELTS K R. Lake basins through space and time. Tulsa,Oklahoma:AAPG Studies in Geology 46,2000:3-34.
[9] CAROLL A R,BOHACS K M. Stratigraphic classification of ancient lakes:Balancing tectonic and climatic controls[J]. Geology,1999,27(2):99-102.
[10] POSAMENTIER H W,VAIL P R. Eustatic controls on clastic depo-sition. Ⅱ-sequence and systems tract models[M]//WILGUS C K, HASTINGS B S,POSAMENTIER H W. Sea-level changes:An integrated approach. Austin:SEPM Special Publication, 1988:125-154.
[11] GILBERT G K. Lake Bonneville[M]. Lexington,Commonwealth of Virginia:U.S. Geological Survey,1890:1-27.
[12] 杨占龙.陆相湖盆岩性圈闭地震解释与地质评价[M].北京:石油工业出版社,2024. YANG Zhanlong. Seismic interpretation and geological evaluation of lithological traps in lacustrine basins[M]. Beijing:Petroleum Industry Press,2024.
[13] 许效松,尹福光,万方,等.广西钦防海槽迁移与沉积-构造转换面[J].沉积与特提斯地质,2001,21(4):1-10. XU Xiaosong,YIN Fuguang,WAN Fang,et al. The migration of the Qinzhou-Fangcheng trough in Guangxi and associated sedimentary-tectonic transform surfaces[J]. Sedimentary Geology and Tethyan Geology,2001,21(4):1-10.
[14] 许效松,汪正江,万方,等.塔里木盆地早古生代构造古地理演化与烃源岩[J].地学前缘,2005,12(3):49-57. XU Xiaosong,WANG Zhengjiang,WAN Fang,et al. Tectonic paleogeographic evolution and source rocks of the Early Paleo-zoic in the Tarim Basin[J]. Earth Science Frontiers,2005,12(3):49-57.
[15] 高阳东,汪旭东,林鹤鸣,等.珠江口盆地陆丰凹陷恩平组内部构造-沉积转换面识别及意义[J].天然气地球科学,2021, 32(7):961-970. GAO Yangdong,WANG Xudong,LIN Heming,et al. Characteristics and significances of the tectono-sedimentary transitional unconformity in Enping Formation of Lufeng Sag,Pearl River Mouth Basin[J]. Natural Gas Geoscience,2021,32(7):961-970.
[16] 王红亮.转换面的概念及其层序地层学意义[J].地学前缘, 2008,15(2):35-42. WANG Hongliang. Concept of turnaround surface and its sig-nificance to sequence stratigraphy[J]. Earth Science Frontiers, 2008,15(2):35-42.
[17] 袁明生,梁世君,燕列灿,等.吐哈盆地油气地质与勘探实践[M].北京:石油工业出版社,2002. YUAN Mingsheng,LIANG Shijun,YAN Liecan,et al. Hydro-carbon geology and exploration practice in Tuha Basin[M]. Beijing:Petroleum Industry Press,2002.
[18] 袁选俊,朱如凯,刘化清,等.岩性地层大油气区地质理论与评价技术[M].北京:石油工业出版社,2023:315-356. YUAN Xuanjun,ZHU Rukai,LIU Huaqing,et al. Geological theory and evaluation technologies in large litho-Stratigraphic hydrocarbon areas[M]. Beijing:Petroleum Industry Press,2023:315-356.
[19] RAISZ E. Rounded lakes and lagoons of the coastal plain of Massachusetts[J]. The Journal of Geology,1937,42(8):839-848.
[20] MELLO M R,HESSEL M H. Biological mark and paleozoo-logical characterization of the early marine incursion in the lacus-trine sequences of the Campos basin[R]. Salt Lake City,Utah:American Association of Petroleum Geologists Annual Convention,1998.
[21] DEAN W E. Carbonate minerals and organic matter in sediments of modern north temperate hard water lakes[C]//ETHRIDGE F G,FLORES R M. Recent and ancient nonmarine depositional environments:Models for exploration. Austin:SEPM Special Publication,1981:213-232.
[22] DEMAISON G J,MOORE G T. Anoxic environments and oil source bed genesis[J]. AAPG Bulletin,1980,2(1):9-31.
[23] 杨占龙,沙雪梅,魏立花,等.地震隐性层序界面识别、高频层序格架建立与岩性圈闭勘探:以吐哈盆地西缘侏罗系-白垩系为例[J].岩性油气藏,2019,31(6):1-13. YANG Zhanlong,SHA Xuemei,WEI Lihua,et al. Seismic subtle sequence boundary identification,high-frequency sequence framework establishment and lithologic trap exploration:A case study of Jurassic to Cretaceous in the western margin of TurpanKumul Basin[J]. Lithologic Reservoirs,2019,31(6):1-13.
[24] 杨占龙,肖冬生,周隶华,等.高分辨率层序格架下的陆相湖盆精细沉积体系研究:以吐哈盆地西缘侏罗系-古近系为例[J].岩性油气藏,2017,29(5):1-10. YANG Zhanlong,XIAO Dongsheng,ZHOU Lihua,et al. Depo-sitional system of lacustrine basins within high-resolution sequence framework:A case of Jurassic to Paleogene in western TurpanKumul Basin[J]. Lithologic Reservoirs,2017,29(5):1-13.
[25] 操应长,金杰华,刘海宁,等.中国东部断陷湖盆深水重力流沉积及其油气地质意义[J].石油勘探与开发,2021,48(2):247-257. CAO Yingchang,JIN Jiehua,LIU Haining,et al. Deep-water gravity flow deposits in a lacustrine rift basin and their oil and gas geological significance in eastern China[J]. Petroleum Exploration and Development,2021,48(2):247-257.
[26] ZAVALA C,LIU Huaqing,LI Xiangbo,et al. Lacustrine sequence stratigraphy:New insights from the study of the Yanchang Formation (Middle-Late Triassic),Ordos Basin,China[M]. Am-sterdam:Elsevier Inc.,2022:309-335.
[27] 李相博,刘化清,完颜容,等.鄂尔多斯盆地三叠系延长组砂质碎屑流储集体的首次发现[J].岩性油气藏,2009,21(4):19-21. LI Xiangbo,LIU Huaqing,WANYAN Rong,et al. First discovery of the sandy debris flow from the Triassic Yanchang Formation,Ordos Basin[J]. Lithologic Reservoirs,2009,21(4):19-21.
[28] 朱如凯,李梦莹,杨静儒,等.细粒沉积学研究进展与发展方向[J].石油与天然气地质,2022,43(2):251-264. ZHU Rukai,LI Mengying,YANG Jingru,et al. Advances and trends of fine-grained sedimentology[J]. Oil&Gas Geology, 2022,43(2):251-264.
[1] 尚文亮, 徐少华, 蔡默仑, 高红灿, 李小刚, 陈岑, 蔡长娥, 秦磊. 沉积过路现象的地震识别特征及控制因素探讨[J]. 岩性油气藏, 2020, 32(6): 85-96.
[2] 王航, 杨海风, 黄振, 白冰, 高雁飞. 基于可容纳空间变化的河流相演化新模式及其控藏作用——以莱州湾凹陷垦利A构造为例[J]. 岩性油气藏, 2020, 32(5): 73-83.
[3] 朱珍君, 黄光明, 邱津, 刘康宁, 李琦, 胡俊杰. 哈萨克斯坦斋桑盆地构造特征及其对油气成藏的影响[J]. 岩性油气藏, 2020, 32(4): 23-35.
[4] 潘树新,郑荣才,卫平生,王天奇,陈彬滔,梁苏娟. 陆相湖盆块体搬运体的沉积特征、识别标志与形成机制[J]. 岩性油气藏, 2013, 25(2): 9-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!