岩性油气藏 ›› 2025, Vol. 37 ›› Issue (4): 38–49.doi: 10.12108/yxyqc.20250404

• 地质勘探 • 上一篇    

地震分频多级稀疏正则化反演方法——以渤中凹陷石臼坨凸起古近系东营组二段为例

王剑1, 吴亚宁2, 王涛1, 贾万丽1, 包一凡2, 刘立峰2   

  1. 1. 中海石油(中国)有限公司北京研究中心 勘探开发研究院, 北京 100028;
    2. 中国石油大学(北京)地球物理学院, 北京 102249
  • 收稿日期:2024-10-29 修回日期:2025-04-23 发布日期:2025-07-05
  • 第一作者:王剑(1978-),男,博士,工程师,主要从事储层预测与油气勘探研究工作。地址:(100028)北京市朝阳区中海油研究总院有限责任公司勘探开发研究院。Email:intosnow@163.com。
  • 通信作者: 刘立峰(1979-),男,博士,副教授,主要从事高分辨率反演与复杂储层预测研究。Email:liulifeng@cup.edu.cn。
  • 基金资助:
    国家自然科学基金“致密砂岩脆性影响因素及多参量-多尺度脆性综合评价研究”(编号:42274140)资助。

Multi-level sparse regularization inversion method for seismic frequency division: A case study from the second member of Paleogene Dongying Formation in Shijiutuo Uplift,Bozhong Sag

WANG Jian1, WU Yaning2, WANG Tao1, JIA Wanli1, BAO Yifan2, LIU Lifeng2   

  1. 1. Exploration and Development Research Institute, Beijing Research Center, CNOOC (China) Ltd., Beijing 100028, China;
    2. School of Geophysics, China University of Petroleum (Beijing), Beijing 102249, China
  • Received:2024-10-29 Revised:2025-04-23 Published:2025-07-05

摘要: 常规地震反演技术对井网密度小、单层厚度小及非均质性强的储层预测精度低。基于匹配追踪与Wigner-Ville分布时频方法、稀疏理论及贝叶斯理论,提出了一种基于地震分频的多级稀疏正则化反演方法,进行了模型数据测试,并在渤中凹陷石臼坨凸起古近系东营组二段储层预测中进行了实际应用。研究结果表明:①地震分频多级稀疏正则化反演主要思路为利用匹配追踪-Wigner-Ville分布技术(MP-WVD)将地震信号分解为大、中、小3个尺度的频段;采用贝叶斯理论构建多尺度稀疏反演目标函数,将L2,L1,L0范数约束项分别作用于大、中、小尺度反演过程,以大尺度反演结果为中尺度反演的先验约束,以中尺度反演结果为小尺度反演的先验约束,最终反演结果为小尺度反演的结果。②模型数据测试结果表明,MP-WVD时频谱比连续小波变换时频谱、S变换时频谱的能量集中性更强,时间和频率方向的分辨率均更高,且有效克服了WVD变换时频谱交叉项干扰的问题。③地震分频多级稀疏正则化反演在渤中凹陷石臼坨凸起古近系东营组二段储层波的应用结果显示,纵波阻抗反演结果与测井声波阻抗曲线吻合度较高,比稀疏脉冲反演结果的分辨率更高,较高的纵向分辨率对薄层刻画更准确。

关键词: 多尺度地震信号, 匹配追踪-Wigner-Ville分布, 稀疏正则化, 贝叶斯理论, 波阻抗, 薄储层刻画;东营组, 渤中凹陷

Abstract: Conventional inversion techniques yield low prediction accuracy for reservoirs with low well density, thin single-layer thickness,and strong heterogeneity. A multi-level sparse regularization inversion method based on seismic frequency division was proposed using matching pursuit and Wigner-Ville distribution time-frequency methods,sparse theory,and Bayesian theory. The model data was tested and the inversion method was applied in the reservoir prediction of the second member of Dongying Formation in Shijiutuo Uplift of Bozhong Sag.The results show that: (1)The main idea of seismic frequency division multi-level sparse regularization inversion is to use the Matching Persuit Wigner-Ville distribution technique(MP-WVD)to decompose seismic signals into large,medium,and small scale frequency bands. Based on that,Bayesian theory is employed to construct a multi-scale sparse inversion objective function,applying L2,L1,and L0 norm constraints to the large,medium,and small scale inversion processes,respectively.A hierarchical iterative strategy is adopted: the largescale inversion results as prior constraints for the medium-scale inversion,and then the medium-scale inversion results as prior constraints for the small-scale inversion,with the final inversion result derived from the smallscale inversion.(2)The model data testing results show that: MP-WVD time-frequency spectrum exhibits stronger energy concentration than continuous wavelet transform(CWT)and S-transform time-frequency spectra, with higher resolution in both time and frequency directions,effectively overcoming the cross-term interference issue present in the WVD transform.(3)The application of seismic frequency division multi-level sparse regularization inversion in the reservoir waves of the second member of Paleogene Dongying Formation in Shijutuo Uplift of Bozhong Sag shows that: the results of the P-wave impedance inversion are in good agreement with the sonic log-derived acoustic impedance. It also provides higher resolution than the sparse pulse inversion results, with superior vertical resolution, offering more accurate characterization of thin layers.

Key words: multi-scale seismic signals, Matching Pursuit-Wigner-Ville distribution, sparse regularization, Bayesian theory;wave impedance, thin reservoir characterization, Dongying Formation, Bozhong Sag

中图分类号: 

  • :P631
[1] 杨午阳,魏新建,李海山.智能物探技术的过去、现在与未来[J].岩性油气藏,2024,36(2):170-188.YANG Wuyang,WEI Xinjian,LI Haishan.The past,present and future of intelligent geophysical technology[J].Lithologic Reservoirs,2024,36(2):170-188.
[2] 赵云,文晓涛,尹川,等.叠前重加权L1范数稀疏约束的地震反演方法[J].石油地球物理勘探,2023,58(6):1398-1409.ZHAO Yun,WEN Xiaotao,YIN Chuan,et al.Prestack seismic inversion with reweighted L1-norm sparse constraints[J].Oil Geophysical Prospecting,2023,58(6):1398-1409.
[3] 罗亚能,崔京彬,陈亚军,等.改进的地质统计学反演技术[C]//中国石油学会石油物探专业委员会.第二届中国石油物探学术年会论文集.涿州:中国石油东方地球物理公司物探技术研究中心,2024.LUO Yaneng,CUI Jingbin,CHEN Yajun,et al.Improved geostatistical inversion technique[C]//Petroleum Exploration Committee of China Petroleum Society.Proceedings of the 2nd China petroleum physical prospecting annual conference.Zhuozhou:Physical Exploration Technology Research Center of China Petroleum Oriental Geophysical Company,2024.
[4] 骆迪,王宏斌,蔡峰,等.深度学习技术在地震储层预测中的应用及挑战[J].石油地球物理勘探,2024,59(3):640-651.LUO Di,WANG Hongbin,CAI Feng,et al.Application and challenges of deep learning technology in seismic data-based reservoir prediction[J].Oil Geophysical Prospecting,2024,59(3):640-651.
[5] 谢晓军,吴克强,张锦伟,等.渤中凹陷东南缘东二下亚段扇体成因新认识[J].中国海上油气,2022,34(3):28-37.XIE Xiaojun,WU Keqiang,ZHANG Jinwei,et al.A new insight in fan genesis of the lower Ed2 of Dongying Formation in southeastern margin,Bozhong Sag[J].China Offshore Oil and Gas,2022,34(3):28-37.
[6] 何玉,周星,李少轩,等.渤海湾盆地渤中凹陷古近系地层超压成因及测井响应特征[J].岩性油气藏,2022,34(3):60-69.HE Yu,ZHOU Xing,LI Shaoxuan,et al.Genesis and logging response characteristics of formation overpressure of Paleogene in Bozhong Sag,Bohai Bay Basin[J].Lithologic Reservoirs,2022,34(3):60-69.
[7] JIA Nan,LIU Chiyang,WANG Jianqiang,et al.New insights into Cenozoic evolution of the Shijiutuo uplift,Bohai Bay Basin,China:Constraints from apatite fission track analysis and seismic data[J].Marine and Petroleum Geology,2024,164:106808.
[8] 徐伟慕,郭平,胡天跃.薄互层调谐与分辨率分析[J].石油地球物理勘探,2013,48(5):750-757.XU Weimu,GUO Ping,HU Tianyue.Thin interbed tuning and resolution analysis[J].Oil Geophysical Prospecting,2013,48(5):750-757.
[9] 成锁,赵光亮,王鑫,等.基于高分辨率层序约束的薄储层地震预测方法研究[J].地球物理学进展,2024,39(2):606-619.CHENG Suo,ZHAO Guangliang,WANG Xin,et al.Thin reservoir seismic prediction method based on high resolution sequence constraint[J].Progress in Geophysics,2024,39(2):606-619.
[10] LIU Lei,ZHONG Yijiang,CHEN Hongde,et al.Seismically induced soft-sediment deformation structures in the Palaeogene deposits of the Liaodong Bay Depression in the Bohai Bay Basin and their spatial stratigraphic distribution[J].Sedimentary Geology,2016,342:78-90.
[11] CHEN Hehe,ZHU Xiaomin,GAWTHORPE R L,et al.The interactions of volcanism and clastic sedimentation in rift basins:Insights from the Palaeogene-Neogene Shaleitian uplift and surrounding sub-basins,Bohai Bay Basin,China[J].Basin Research,2022,34(3):1084-1112.
[12] 加东辉,周心怀,李建平,等.一种少井地区"岩性圈闭表征"的思路:以辽东湾地区为例[J].岩性油气藏,2009,21(4):124-129.JIA Donghui,ZHOU Xinhuai,LI Jianping,et al.A new idea for lithologic trap description with little wells:Taking Liaodongwan area as an example[J].Lithologic Reservoirs,2009,21(4):124-129.
[13] YANG Sen,WU Guochen,SHAN Junzhen.Multi-scale seismic envelope inversion method based on sparse representation theory[J].Journal of Applied Geophysics,2022,203:104685.
[14] 赵宝银,张明.相控叠前地质统计学反演方法在低渗油藏优质储层预测中的应用:以A区沙三段3亚段V油组为例[J].油气藏评价与开发,2022,12(4):666-676.ZHAO Baoyin,ZHANG Ming.Application of facies-controlled prestack geostatistical inversion method in high quality reservoir prediction of low permeability reservoir:A case study of V Oil Formation of Es33 in Block A[J].Petroleum Reservoir Evaluation and Development,2022,12(4):666-676.
[15] 桂金咏,李胜军,高建虎,等.基于特征变量扩展的含气饱和度随机森林预测方法[J].岩性油气藏,2024,36(2):65-75.GUI Jinyong,LI Shengjun,GAO Jianhu,et al.A random forests prediction method for gas saturation based on feature variable extension[J].Lithologic Reservoirs,2024,36(2):65-75.
[16] 张义,尹艳树.约束稀疏脉冲反演在杜坡油田核三段中的应用[J].岩性油气藏,2015,27(3):103-107.ZHANG Yi,YIN Yanshu.Application of constrained sparse spike inversion in the third member of Hetaoyuan Formation in Dupo Oilfield[J].Lithologic Reservoirs,2015,27(3):103-107.
[17] ALFARRAJ M,ALREGIB G.Semisupervised sequence modeling for elastic impedance inversion[J].Interpretation,2019,7(3):SE237-SE249.
[18] 杨爽,丁建强,霍晗勇,等.基于压缩感知的数据重构技术在拓频处理中的应用[J].石油物探,2023,62(增刊1):81-87.YANG Shuang,DING Jianqiang,HUO Hanyong,et al.Application of data reconstruction technology based on compressed sensing in frequency extension processing[J].Geophysical Prospecting for Petroleum,2023,62(Suppl 1):81-87.
[19] 苏勤,曾华会,徐兴荣,等.沙漠区地震数据高分辨率处理关键方法及其在尼日尔Agedem地区的应用[J].岩性油气藏,2023,35(6):18-28.SU Qin,ZENG Huahui,XU Xingrong,et al.Key techniques of high-resolution processing of desert seismic data and its application in Agedem area,Niger[J].Lithologic Reservoirs,2023,35(6):18-28.
[20] 刘文霞.分频处理技术在辽河深层地震资料处理中的应用[J].石油物探,2001,40(2):116-120.LIU Wenxia.Application of frequency divided processing technique in the processing seismic data from the deep-seated formations in Liaohe oil field[J].Geophysical Prospecting for Petroleum,2001,40(2):116-120.
[21] 胡咏,于兴河,胡光义,等.印尼C油田储层层序地层分析与沉积相研究[J].中国海上油气,2006,18(1):17-21.HU Yong,YU Xinghe,HU Guangyi,et al.Sequence stratigraphy and sedimentary facies of reservoir in C oilfield,Indonesia[J].China Offshore Oil and Gas,2006,18(1):17-21.
[22] 于建国,韩文功,刘力辉.分频反演方法及应用[J].石油地球物理勘探,2006,41(2):193-197.YU Jianguo,HAN Wengong,LIU Lihui.Frequency-divided inversion and application[J].Oil Geophysical Prospecting,2006,41(2):193-197.
[23] 熊冉,赵继龙,厚刚福.用频谱分解和地震峰值属性分析预测薄砂岩储集层[J].新疆石油地质,2013,34(2):225-227.XIONG Ran,ZHAO Jilong,HOU Gangfu.Using spectral decomposition technology and seismic peak attribute analysis for prediction of thin sandstone reservoir[J].Xinjiang Petroleum Geology,2013,34(2):225-227.
[24] 叶云飞,刘春成,刘志斌,等.海上宽频地震反演方法及其在南海深水区的应用[J].中国海上油气,2018,30(2):65-70.YE Yunfei,LIU Chuncheng,LIU Zhibin,et al.Analysis of marine broadband seismic data inversion and application in deep water of South China Sea[J].China Offshore Oil and Gas,2018,30(2):65-70.
[25] 代玲,万钧,罗泽.应用波形相控分频反演预测高泥质疏松砂岩薄储层[J].物探化探计算技术,2022,44(1):1-8.DAI Ling,WAN Jun,LUO Ze.Application of waveform faciescontrolled frequency division inversion to prediction of thin reservoirs in high-argillaceous unconsolidated sandstone[J].Computing Techniques for Geophysical and Geochemical Exploration,2022,44(1):1-8.
[26] 李丛,张栋,袁青松,等.多子波分频反演技术在泥页岩储层预测中的应用研究[J].地球物理学进展,2024,39(6):2306-2317.LI Cong,ZHANG Dong,YUAN Qingsong,et al.Application of multi-wavelet frequency division inversion technology in shale reservoir prediction[J].Progress in Geophysics,2024,39(6):2306-2317.
[27] XIANG Kun,YANG Yadi,HUANG Handong,et al.Joint impedance inversion and spectral decomposition for deepwater gas reservoir characterization:A case study in South China Sea[J].Interpretation,2021,9(1):T63-T77.
[28] 陈康,戴隽成,魏玮,等.致密砂岩AVO属性的贝叶斯岩相划分方法:以川中地区侏罗系沙溪庙组沙一段为例[J].岩性油气藏,2024,36(5):111-121.CHEN Kang,DAI Juncheng,WEI Wei,et al.Lithofacies classification of tight sandstone based on Bayesian Facies-AVO attributes:A case study of the first member of Jurassic Shaximiao Formation in central Sichuan Basin[J].Lithologic Reservoirs,2024,36(5):111-121.
[29] SUN Jiajia,LI Yaoguo.Adaptive Lp inversion for simultaneous recovery of both blocky and smooth features in a geophysical model[J].Geophysical Journal International,2014,197(2):882-899.
[30] YANG Jun,YIN Cheng,DAI Ronghuo.Seismic impedance inversion via L0 gradient minimisation[J].Exploration Geophysics,2019,50(6):575-582.
[31] HAMID H,PIDLISECKY A.Multitrace impedance inversion with lateral constraints[J].Geophysics,2015,80(6):M101-M111.
[32] 张宇焜,王晖,胡晓庆,等.少井条件下的复杂岩性储层地质建模技术:以渤海湾盆地石臼坨凸起A油田为例[J].石油与天然气地质,2016,37(3):450-456.ZHANG Yukun,WANG Hui,HU Xiaoqing,et al.Reservoir modeling of complex lithologies with sparse wells:A case from a oilfield in Shijiutuo uplift,Bohai Bay Basin[J].Oil & Gas Geology,2016,37(3):450-456.
[33] 吕世聪,王少鹏,张汶,等.石臼坨凸起南部陡坡带扇三角洲沉积特征研究[J].天然气与石油,2024,42(1):54-62.LYU Shicong,WANG Shaopeng,ZHANG Wen,et al.Research on the sedimentary characteristics of fan delta on the southern steep-slope of Shijiutuo Uplift[J].Natural Gas and Oil,2024,42(1):54-62.
[1] 朱文奇, 昝春景, 张莹, 王涛, 史朝文, 巴李霞, 陈亮, 季汉成. 渤中凹陷西次洼古近系东营组异常高孔带特征及成因机制[J]. 岩性油气藏, 2025, 37(2): 70-80.
[2] 程焱, 王波, 张铜耀, 齐玉民, 杨纪磊, 郝鹏, 李阔, 王晓东. 渤中凹陷渤中A-2区新近系明化镇组岩性油气藏油气运移特征[J]. 岩性油气藏, 2024, 36(5): 46-55.
[3] 周自强, 朱正平, 潘仁芳, 董於, 金吉能. 基于波形相控反演的致密砂岩储层模拟预测方法——以黄骅坳陷沧东凹陷南部古近系孔二段为例[J]. 岩性油气藏, 2024, 36(5): 77-86.
[4] 王雪柯, 王震, 计智锋, 尹微, 姜仁, 侯珏, 张艺琼. 滨里海盆地东缘石炭系盐下碳酸盐岩油气藏成藏规律与勘探技术[J]. 岩性油气藏, 2023, 35(6): 54-62.
[5] 何玉, 周星, 李少轩, 丁洪波. 渤海湾盆地渤中凹陷古近系地层超压成因及测井响应特征[J]. 岩性油气藏, 2022, 34(3): 60-69.
[6] 阳宏, 刘成林, 王飞龙, 汤国民, 李国雄, 曾晓祥, 吴育平. 渤中凹陷东营组古沉积环境及烃源岩发育模式[J]. 岩性油气藏, 2021, 33(6): 81-92.
[7] 叶涛, 王清斌, 代黎明, 陈容涛, 崔普媛. 台地相碳酸盐岩层序划分新方法——以渤中凹陷奥陶系为例[J]. 岩性油气藏, 2021, 33(3): 95-103.
[8] 袁成, 苏明军, 倪长宽. 基于稀疏贝叶斯学习的薄储层预测方法及应用[J]. 岩性油气藏, 2021, 33(1): 229-238.
[9] 李玉凤, 孙炜, 何巍巍, 杨云飞, 章新文, 严移胜. 基于叠前反演的泥页岩地层压力预测方法[J]. 岩性油气藏, 2019, 31(1): 113-121.
[10] 张以明, 陈树光, 崔永谦, 田建章, 王鑫, 王孟华. 二连盆地乌兰花凹陷安山岩岩相展布及储层预测[J]. 岩性油气藏, 2018, 30(6): 1-9.
[11] 杜晓峰, 王清斌, 庞小军, 代黎明, 张参. 渤中凹陷石南陡坡带东三段源汇体系定量表征[J]. 岩性油气藏, 2018, 30(5): 1-10.
[12] 庞小军, 代黎明, 王清斌, 刘士磊, 冯冲. 渤中凹陷西北缘东三段低渗透储层特征及控制因素[J]. 岩性油气藏, 2017, 29(5): 76-88.
[13] 吴兆徽,徐守余,刘西雷,吴颖昊,宋泓霖,牛丽娟 . 复杂砂砾岩体岩性定量识别技术[J]. 岩性油气藏, 2016, 28(2): 114-118.
[14] 韩光明,潘光超,付 琛,罗 琪,邵 远,汪 锐. 含气储层及盖层速度变化对地震响应和AVO 类型的影响[J]. 岩性油气藏, 2016, 28(2): 107-113.
[15] 李新豫,曾庆才,包世海,黄家强. “两步法反演”技术在致密砂岩气藏预测中的应用———以苏里格气田苏X区块为例[J]. 岩性油气藏, 2013, 25(5): 81-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!