岩性油气藏 ›› 2021, Vol. 33 ›› Issue (1): 229–238.doi: 10.12108/yxyqc.20210121

• 勘探技术 • 上一篇    下一篇

基于稀疏贝叶斯学习的薄储层预测方法及应用

袁成, 苏明军, 倪长宽   

  1. 中国石油勘探开发研究院西北分院, 兰州 730020
  • 收稿日期:2019-12-30 修回日期:2020-02-28 出版日期:2021-02-01 发布日期:2021-01-25
  • 第一作者:袁成(1988-),男,博士,工程师,主要从事地震沉积学及地震油藏表征等方面的研究工作。地址:(730020)甘肃省兰州市城关区雁儿湾路535号。Email:yc0124@petrochina.com.cn。
  • 基金资助:
    国家油气重大科技专项“岩性地层油气藏区带、圈闭有效性评价预测技术”(编号:2017ZX05001-003)与中国石油天然气股份有限公司科学研究与技术开发项目“地震沉积分析与岩性地层圈闭识别关键技术研究及软件开发”(编号:2019B-0310)联合资助

A new method for thin reservoir identification based on sparse Bayesian learning and its application

YUAN Cheng, SU Mingjun, NI Changkuan   

  1. Research Institute of Petroleum Exploration and Development-Northwest, Lanzhou 730020, China
  • Received:2019-12-30 Revised:2020-02-28 Online:2021-02-01 Published:2021-01-25

摘要: 薄储层是近年来我国油气勘探的重点目标之一,提高地下薄储层识别能力对油气勘探具有重要意义。对于薄储层预测,由于地震分辨率及邻层干涉等因素的制约,基于反射地震数据直接探测地下薄储层的难度较大。为此,采用一种新的稀疏贝叶斯学习理论开展地震反射系数反演,并在获取地层反射系数的基础上计算地层相对波阻抗信息,通过设计线性FIR滤波器滤除地层相对波阻抗计算过程中的低频累积误差,进而开展薄储层高精度预测。实际资料应用表明:新的基于稀疏贝叶斯学习理论的地震反射系数反演方法可大幅度提高地层反射系数的计算精度,为获取高精度地层相对波阻抗奠定了基础;设计的线性FIR滤波器能够有效拟制地层相对波阻抗中的低频累积误差,提高了薄储层识别精度。与传统地震振幅属性相比,本次研究获取的地层相对波阻抗信息能更精确地表征薄储层平面形态展布特征,并能有效提高薄储层勘探的成功率。

关键词: 薄储层, 稀疏贝叶斯学习, 反射系数, FIR高通滤波, 地层相对波阻抗

Abstract: In recent years,thin reservoir is one of the main targets of oil and gas exploration in China. To enhance the ability of thin reservoir identification can be significant for detecting the residual hydrocarbon resources. Due to the limitation of seismic resolution and the interference of seismic reflection among neighboring thin layers,it is a tricky task to directly evaluate thin reservoir based on the seismic reflection data. Therefore,a new method of seismic reflectivity inversion based on sparse Bayesian learning was adopted,and then the relative acoustic impedance of underground strata was estimated by the inverted seismic reflectivity. A linear FIR filtering was also introduced to eliminate the low-frequency accumulative errors which were generated in the processing of relative impedance calculation. Thin reservoir can be finally identified based on the filtered relative impedance with higher confidence. Field application shows that the accuracy of seismic reflectivity can be improved significantly by seismic reflectivity inversion based on sparse Bayesian learning,laying a solid foundation for a better estimation of relative impedance of underground formation. The designed linear FIR filter can effectively suppress the low-frequency accumulative errors in the estimated relative impedance,improving the accuracy of thin reservoir detection. Comparing with the traditional seismic amplitude,the relative impedance estimated by the proposed method can reveal the lateral distribution of thin reservoir more accurately,and finally improves the success rate of thin reservoir exploration.

Key words: thin reservoir, sparse Bayesian learning, seismic reflectivity, FIR high-pass filtering, relative impedance

中图分类号: 

  • P618.13
[1] 郝亚炬,文晓涛,李忠,等. 基于基追踪分解算法的薄层波阻抗反演. 科学技术与工程,2015,15(33):10-17. HAO Y J,WEN X T,LI Z,et al. Impedance inversion of thin-bed based on Basis pursuit. Science Technology and Engineering, 2015,15(33):10-17.
[2] 迟唤昭,刘财,单玄龙,等. 谱反演方法在致密薄层砂体预测中的应用研究.石油物探,2015,54(3):337-344. CHI H Z,LIU C,SHAN X L,et al. Application of spectral inversion for tight thin-bed sand body prediction. Geophysical Prospecting for Petroleum,2015,54(3):337-344.
[3] 刘化清,苏明军,倪长宽,等. 薄砂体预测的地震沉积学研究方法. 岩性油气藏,2018,30(2):1-11. LIU H Q,SU M J,NI C K,et al. Thin bed prediction from interbedded background:Revised seismic sedimentological method. Lithologic Reservoirs,2018,30(2):1-11.
[4] 杨占龙,沙雪梅,魏立花,等. 地震隐性层序界面识别、高频层序格架建立与岩性圈闭勘探:以吐哈盆地西缘侏罗系-白垩系为例. 岩性油气藏,2019,31(6):1-13. YANG Z L,SHA X M,WEI L H,et al. Seismic subtle sequence boundary identification,high-frequency sequence framework establishment and lithologic trap exploration:a case study of Jurassic to Cretaceous in the west margin of Turpan-Kumul Basin. Lithologic Reservoirs,2019,31(6):1-13.
[5] 刘恭利,韩自军,段新意,等. 薄互层火成岩地震响应特征及厚度预测.岩性油气藏,2019,31(3):105-112. LIU G L,HAN Z J,DUAN X Y,et al. Seismic response characteristics and thickness prediction of thin interbedded igneous rocks. Lithologic Reservoirs,2019,31(3):105-112.
[6] 李亚哲,王力宝,郭华军,等. 基于地震波形指示反演的砂砾岩储层预测:以中拐-玛南地区上乌尔禾组为例. 岩性油气藏,2019,31(2):134-142. LI Y Z,WANG L B,GUO H J,et al. Prediction of glutenite reservoir based on seismic waveform indicative inversion:a case study of Upper Urho Formation in Zhongguai-Manan area. Lithologic Reservoirs,2019,31(2):134-142.
[7] 张铁强,孙鹏远,钱忠平,等. 薄煤层AVO响应特征分析. 石油地球物理勘探,2013,48(4):597-603. ZHANFG T Q,SUN P Y,QIAN Z P,et al. AVO analysis on thin coalbed. Oil Geophysical Prospecting,2013,48(4):597-603.
[8] 刁瑞. 地震数据提高分辨率处理监控评价技术. 岩性油气藏, 2020,32(1):94-101. DIAO R. Monitoring and evaluation technology for high resolution processing of seismic data. Lithologic Reservoirs,2020,32(1):94-101.
[9] 罗泽,谢明英,涂志勇,等. 一套针对高泥质疏松砂岩薄储层的识别技术:以珠江口盆地X油田为例. 岩性油气藏,2019, 31(6):95-101. LUO Z,XIE M Y,TU Z Y,et al. A set of recognition techniques for thin reservoirs with unconsolidated high-argillaceous sandstone:a case study from X oilfield in Pearl River Mouth Basin. Lithologic Reservoirs,2019,31(6):95-101.
[10] 常少英,张先龙,刘永福,等. 薄层砂体识别的地震沉积学研究:以TZ12井区为例. 岩性油气藏,2015,27(6):72-77. CHANG S Y,ZHANG X L,LIU Y F,et al. Seismic sedimentology for thin sand body identification:a case study fro TZ12 well block. Lithologic Reservoirs,2015,27(6):72-77.
[11] 王西文,石兰亭,雍学善,等. 地震波阻抗反演方法研究. 岩性油气藏,2007,19(3):80-88. WANG X W,SHI L T,YONG X S,et al. Study on seismic impedance inversion. Lithologic Reservoirs,2007,19(3):80-88.
[12] 汪玲玲,高静怀,赵谦,等. 基于矩阵Toeplitz稀疏分解的相对波阻抗反演方法.地球物理学报,2017,60(2):639-654. WANG L L,GAO J H,ZHAO Q,et al. Relative acoustic impedance inversion via Toeplitz-Sparse Matrix Factorization. Chinese Journal of Geophysics,2017,60(2):639-654.
[13] WEN X T,ZHANG B,PENNINGTON W,et al. Relative P-impedance estimation using a dipole-based matching pursuit decomposition strategy. Interpretation,2015,3(4):T197-T206.
[14] CHOPRA S,CASTAGNA J,XU Y. Relative acoustic impedance application for thin-bed reflectivity inversion. SEG Technical Program Expanded Abstracts,2009:3554-3558.
[15] 刘晓晶,印兴耀,吴国忱,等. 基于基追踪弹性阻抗反演的深部储层流体识别方法.地球物理学报,2016,59(1):277-286. LIU X J,YIN X Y,WU G C,et al. Identification of deep reservoir fluids based on pursuit inversion for elastic impedance. Chinese Journal of Geophysics,2016,59(1):277-286.
[16] DEBEYE H W J,RIEL P. Lp-norm deconvolution. Geophysical Prospecting,1990,38(4):381-403.
[17] YUAN S,WANG S. Spectral sparse Bayesian learning reflectivity inversion. Geophysical Prospecting,2013,61(4):735-746.
[18] CHAI X,WANG S,WEI J,et al. Reflectivity inversion for attenuated seismic data:Physical modeling and field data experiments. Geophysics,2016,81(1):T11-T24.
[19] YUAN C,SU M. Seismic spectral sparse reflectivity inversion based on SBL-EM:Experimental analysis and application. Journal of Geophysics and Engineering,2019,16:1124-1138.
[20] 王本锋,陈小宏,刘国昌,等.Geman范数约束的频率域反射系数反演.石油地球物理勘探,2014,49(4):667-671. WANG B F,CHEN X H,LIU G C,et al. Reflectivity inversion in frequency domain based on Geman norm constraint. Oil Geophysical Prospecting,2014,49(4):667-671.
[21] 陈祖庆,王静波. 基于压缩感知的稀疏脉冲反射系数谱反演方法研究.石油物探,2015,54(4):459-466. CHEN Z Q,WANG J B. A spectral inversion method of sparsespike reflection coefficients based on compressed sensing. Geophysical Prospecting for Petroleum,2015,54(4):459-466.
[22] WANG J,WANG S,YUAN S,et al. Stochastic spectral inversion for sparse-spike reflectivity by presenting the number of non-zero spikes as a prior sparsity constraint. Journal of Geophysics and Engineering,2014,11(1):015010.
[23] LI F,XIE R,SONG W,et al. Optimal seismic reflectivity inversion:data-derived Lp-loss-Lq-regularization sparse regression. IEEE Geoscience and Remote Sensing Letters,2019,16(5):806-810.
[24] JI Y,YUAN S,WANG S,et al. Frequency-domain sparse Bayesian learning inversion of AVA data for elastic parameters reflectivities. Journal of Applied Geophysics,2016,133:1-8.
[25] MA M,WANG S,YUAN S,et al. Multichannel spatially correlated reflectivity inversion using block sparse Bayesian learning. Geophysics,2017,82(4):V191-V199.
[26] RUBINO J G,VELIS D. Thin-bed prestack spectral inversion. Geophysics,2009,74(4):R49-R57.
[27] BICKEL S H,MARTINEZ D R. Resolution performance ofWiener filters. Geophysics,1983,48(7):887-899.
[28] SACCHI M D,VELIS D R,COMINGUEZ A H. Minimum entropy deconvolution with frequency-domain constraints. Geophysics, 1994,59(6):938-945.
[29] CHEN S S,DONOHO D L,SAUNDERS M A. Atomic decomposition by basis pursuit. Society for Industrial andAppliedMathematics Review,2001,43(1):129-159.
[30] TIPPING M E. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research,2001,1(3):211-244.
[31] TIPPING M E,FAUL A C. Fast marginal likelihood maximization for sparse Bayesian models. Proceedings of the 9 th International Workshop on Artificial Intelligence and Statistics,2003:1-13.
[32] WIPF D P,RAO B D. Sparse Bayesian learning for basis selection. IEEE Transaction on Signal Processing,2004,52(8):2153-2164.
[33] TARANTOLAA. Inverse problem theory and methods for model parameter estimation. SIAM,2005.
[34] 王建功,王天琦,卫平生,等. 大型凹陷湖盆浅水三角洲沉积模式:以松辽盆地北部葡萄花油层为例. 岩性油气藏,2007, 19(2):28-34. WANG J G,WANG T Q,WEI P S,et al. Sedimentary mode of shallow lacustrine delta of large continental basin:an example from Putaohua Formation in northern Songliao Basin. Lithologic Reservoirs,2007,19(2):28-34.
[35] 付宪弟,王胜男,张亮,等. 松辽盆地榆林树-肇州地区葡萄花油层沉积相类型及沉积演化特征. 岩性油气藏,2013,25(2):26-35. FU X D,WANG S N,ZHANG L,et al. Sedimentary types and evolution characteristics of Putaohua reservoir in Yushulin-Zhaozhou area,Songliao Basin. Lithologic Reservoirs,2013,25(2):26-35.
[36] PORTNIAGUINE O,CASTAGNA J P. Spectral inversion:Lesson from modeling and Boonesville case study. SEG Technical Program Expanded Abstracts,1985:1638-1641.
[37] 陈媛媛,刘有耀. FIR滤波器的FPGA设计与实现. 电子设计工程,2017,25(24):65-69. CHEN Y Y,LIU Y Y. FIR filter of the FPGA design and implementation. Electronic Design Engineering,2017,25(24):65-69.
[1] 李凌, 张照坤, 李明隆, 倪佳, 耿超, 唐思哲, 杨文杰, 谭秀成. 四川盆地威远—高石梯地区二叠系栖霞阶层序地层特征及有利储层分布[J]. 岩性油气藏, 2022, 34(6): 32-46.
[2] 曹思佳, 孙增玖, 党虎强, 曹帅, 刘冬民, 胡少华. 致密油薄砂体储层预测技术及应用实效——以松辽盆地敖南区块下白垩统泉头组为例[J]. 岩性油气藏, 2021, 33(1): 239-247.
[3] 罗泽, 谢明英, 涂志勇, 卫喜辉, 陈一鸣. 一套针对高泥质疏松砂岩薄储层的识别技术——以珠江口盆地X油田为例[J]. 岩性油气藏, 2019, 31(6): 95-101.
[4] 石战战, 夏艳晴, 周怀来, 王元君. 一种联合SBL和DTW的叠前道集剩余时差校正方法[J]. 岩性油气藏, 2019, 31(3): 86-94.
[5] 邓帅, 刘学伟, 王祥春. 上覆水平界面对目的层地震波振幅的影响[J]. 岩性油气藏, 2017, 29(3): 118-125.
[6] 李胜军,高建虎,雍学善,王耀,魏新建. 小尺度体反射系数近似公式研究[J]. 岩性油气藏, 2014, 26(1): 96-99.
[7] 刁瑞,尚新民,芮拥军,冮明川,柳光华. 时频域谱模拟反褶积方法研究[J]. 岩性油气藏, 2013, 25(1): 116-121.
[8] 刘开元. 裂缝介质转换波方位各向异性研究[J]. 岩性油气藏, 2011, 23(1): 90-93.
[9] 史松群,王宇超. 有关岩性地震勘探的讨论与思考[J]. 岩性油气藏, 2007, 19(3): 131-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[2] 刘震, 陈艳鹏, 赵阳,, 郝奇, 许晓明, 常迈. 陆相断陷盆地油气藏形成控制因素及分布规律概述[J]. 岩性油气藏, 2007, 19(2): 121 -127 .
[3] 丁超,郭兰,闫继福. 子长油田安定地区延长组长6 油层成藏条件分析[J]. 岩性油气藏, 2009, 21(1): 46 -50 .
[4] 李彦山,张占松,张超谟,陈鹏. 应用压汞资料对长庆地区长6 段储层进行分类研究[J]. 岩性油气藏, 2009, 21(2): 91 -93 .
[5] 罗 鹏,李国蓉,施泽进,周大志,汤鸿伟,张德明. 川东南地区茅口组层序地层及沉积相浅析[J]. 岩性油气藏, 2010, 22(2): 74 -78 .
[6] 左国平,屠小龙,夏九峰. 苏北探区火山岩油气藏类型研究[J]. 岩性油气藏, 2012, 24(2): 37 -41 .
[7] 王飞宇. 提高热采水平井动用程度的方法与应用[J]. 岩性油气藏, 2010, 22(Z1): 100 -103 .
[8] 袁云峰,才业,樊佐春,姜懿洋,秦启荣,蒋庆平. 准噶尔盆地红车断裂带石炭系火山岩储层裂缝特征[J]. 岩性油气藏, 2011, 23(1): 47 -51 .
[9] 袁剑英,付锁堂,曹正林,阎存凤,张水昌,马达德. 柴达木盆地高原复合油气系统多源生烃和复式成藏[J]. 岩性油气藏, 2011, 23(3): 7 -14 .
[10] 石战战,贺振华,文晓涛,唐湘蓉. 一种基于EMD 和GHT 的储层识别方法[J]. 岩性油气藏, 2011, 23(3): 102 -105 .