岩性油气藏 ›› 2025, Vol. 37 ›› Issue (5): 83–96.doi: 10.12108/yxyqc.20250508

• 地质勘探 • 上一篇    

玛湖凹陷玛中构造带二叠系风城组烃源岩生气潜力及成藏条件

刘冠伯1, 陈世加1, 李世宏2, 邹阳2, 李勇1   

  1. 1. 西南石油大学 地球科学与技术学院, 成都 610500;
    2. 中国石油新疆油田公司 勘探开发研究院, 新疆 克拉玛依 834000
  • 收稿日期:2025-03-17 修回日期:2025-04-24 发布日期:2025-09-06
  • 第一作者:刘冠伯(1993—),男,西南石油大学在读硕士研究生,研究方向为地球化学。地址:(610500)四川省成都市新都区新都大道8号西南石油大学地球科学与技术学院。Email:lliuguanbo@126.com。
  • 通信作者: 陈世加(1964—),男,博士,教授,主要从事油气成藏、地球化学、非常规油气地质等方面的研究工作。Email:chensj1964@sina.com。
  • 基金资助:
    四川省自然科学基金项目“源储间的薄层泥岩对致密砂岩储层含油性的控制机理研究”(编号:2025ZNSFSC0309)和中国石油天然气股份有限公司重大科技专项“页岩油富集规律、资源潜力与有利区带目标评价研究”(编号:2022DJ0108)联合资助。

Gas generation potential and reservoir formation condition of Permian Fengcheng Formation source rock in Mazhong structural belt of Mahu Sag

LIU Guanbo1, CHEN Shijia1, LI Shihong2, ZOU Yang2, LI Yong1   

  1. 1. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
    2. Exploration and Development Research Institute, Xinjiang Oilfield Company, Karamay 834000, Xinjiang, China
  • Received:2025-03-17 Revised:2025-04-24 Published:2025-09-06

摘要: 玛湖凹陷玛中构造带深层—超深层的油气勘探逐步成为了准噶尔盆地的热点领域。基于岩心的有机地球化学分析数据和高温热模拟实验,系统剖析了玛湖凹陷玛中构造带二叠系风城组烃源岩的有机质丰度(TOC)、生烃潜量(S1+S2)、氢指数(HI)等指标,估算了烃源岩生烃转化率与生气潜力。研究结果表明:①玛中构造带二叠系风城组烃源岩TOC平均值为1.2%,S1+S2平均值为5.6 mg/g,氢指数HI平均值为380 mg/g,有机质生烃转化率高达90%,以生油为主,累计产油率为829 mg/g,高—过成熟阶段累计产气率为40 mL/g,生气量较低,仅占总生烃量的4.3%。②玛湖与玛北背斜构造定型期早于风城组烃源岩的主生排烃期,储层物性差,油气充注强度弱。③玛湖背斜烃源岩埋深普遍大于6 000 m(Ro大于1.6%),生烃基本停滞,且缺乏原油裂解成气的温压条件,气源供给不足,不具备形成规模气藏的物质基础;玛北背斜埋藏相对较浅,周缘烃源岩处于成熟—高成熟阶段(Ro为1.0%~1.5%),具备形成致密轻质油藏的潜力。

关键词: 烃源岩, 生烃转化率, 生气潜力, 风城组, 二叠系, 玛湖背斜, 玛中构造带, 准噶尔盆地

Abstract: The deep to ultra-deep oil and gas exploration of Mazhong structural belt in Mahu Sag has gradually become a hot field in Junggar Basin. Based on organic geochemical analysis data of rock cores and hightemperature thermal simulation experiments,the organic matter abundance(TOC),hydrocarbon generation potential(S1 + S2),hydrogen index(HI)of Permian Fengcheng Formation source rocks in Mazhong structural belt of Mahu Sag were systematically analyzed,and the hydrocarbon conversion rate and gas generation potential of the source rocks were estimated.The results show that:(1)The average TOC of Permian Fengcheng Formation source rocks in Mazhong structural belt is 1.2%,the average hydrocarbon generation potential(S1 + S2)is 5.6 mg/g, and the average hydrogen index(HI)is 380 mg/g.The hydrocarbon conversion rate of organic matter is high upto 90%,mainly for oil generation,with a cumulative oil production rate of 829 mg/g. The cumulative gas production rate during the high-mature to over-mature stage is 40 mL/g,and the gas production is relatively low,accounting for only 4.3% of the total hydrocarbon generation.(2)The structural formation period of Mahu and Mabei anticlines is earlier than the main hydrocarbon generation and expulsion period of Fengcheng Formation source rocks,and the reservoir properties were poor,with weak intensity of oil and gas charging.(3)The burial depth of source rocks in Mahu anticline is generally greater than 6 000 m(Ro greater than 1.6%),and hydrocarbon generation has basically stagnated. Moreover,a lack of temperature and pressure conditions for crude oil cracking into gas results in insufficient gas supply and a lack of material basis for forming large-scale gas reservoirs. The burial depth of Mabei anticline is relatively shallow,and the surrounding source rocks are in the mature to high mature stage(Ro being 1.0%-1.5%),which has the potential to form tight light oil reservoirs.

Key words: source rock, hydrocarbon generation conversion rate, gas generation potential, Fengcheng Formation, Permian, Mahu anticline, Mazhong structural belt, Junggar Basin

中图分类号: 

  • TE122.1
[1] 雷德文,瞿建华,安志渊,等. 玛湖凹陷百口泉组低渗砂砾岩油气藏成藏条件及富集规律[J]. 新疆石油地质,2015,36(6):642-647. LEI Dewen,QU Jianhua,AN Zhiyuan,et al. Hydrocarbon accumulation conditions and enrichment regularity of low-permeability glutenite reservoirs of Baikouquan Formation in Mahu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology,2015,36(6):642-647.
[2] 匡立春,唐勇,雷德文,等. 准噶尔盆地玛湖凹陷斜坡区三叠系百口泉组扇控大面积岩性油藏勘探实践[J]. 中国石油勘探,2014,19(6):14-23. KUANG Lichun,TANG Yong,LEI Dewen,et al. Exploration of fan controlled large area lithologic oil reservoirs of Triassic Baikouquan Formation in slope zone of Mahu Sag in Junggar Basin[J]. China Petroleum Exploration,2014,19(6):14-23.
[3] 陈静,陈军,李卉,等. 准噶尔盆地玛中地区二叠系-三叠系叠合成藏特征及主控因素[J]. 岩性油气藏,2021,33(1):71-80. CHEN Jing,CHEN Jun,LI Hui,et al. Characteristics and main controlling factors of Permian-Triassic superimposed reservoirs in central Mahu Sag,Junggar Basin[J]. Lithologic Reservoirs, 2021,33(1):71-80.
[4] 支东明,唐勇,何文军,等. 准噶尔盆地玛湖凹陷风城组常规-非常规油气有序共生与全油气系统成藏模式[J]. 石油勘探与开发,2021,48(1):38-51. ZHI Dongming,TANG Yong,HE Wenjun,et al. Orderly coexistence and accumulation models of conventional and unconventional hydrocarbons in Lower Permian Fengcheng formation, Mahu sag,Junggar Basin[J]. Petroleum Exploration and Development,2021,48(1):38-51.
[5] 何文军,宋永,汤诗棋,等. 玛湖凹陷二叠系风城组全油气系统成藏机理[J]. 新疆石油地质,2022,43(6):663-673. HE Wenjun,SONG Yong,TANG Shiqi,et al. Hydrocarbon accumulation mechanism of total petroleum system in Permian Fengcheng Formation,Mahu Sag[J]. Xinjiang Petroleum Geology,2022,43(6):663-673.
[6] 宋岩,贾承造,姜林,等. 全油气系统内涵与研究思路[J]. 石油勘探与开发,2024,51(6):1199-1210. SONG Yan,JIA Chengzao,JIANG Lin,et al. Connotation and research strategy of the whole petroleum system[J]. Petroleum Exploration and Development,2024,51(6):1199-1210.
[7] 钱永新,赵毅,刘新龙,等. 玛湖凹陷二叠系风城组页岩油储层特征及高产主控因素[J]. 岩性油气藏,2025,37(1):115-125. QIAN Yongxin,ZHAO Yi,LIU Xinlong,et al. Reservoir characteristics and high yield control factors of Permian Fengcheng Formation shale oil reservoir in Mahu Sag[J]. Lithologic Reservoirs,2025,37(1):115-125.
[8] 宋永,杨智峰,何文军,等. 准噶尔盆地玛湖凹陷二叠系风城组碱湖型页岩油勘探进展[J]. 石油勘探与开发,2022,27(1):60-71. SONG Yong,YANG Zhifeng,HE Wenjun,et al. Exploration progress of alkaline lake type shale oil of the Permian Fengcheng Formation in Mahu Sag,Junggar Basin[J]. Petroleum Exploration and Development,2022,27(1):60-71.
[9] 尹路,许多年,乐幸福,等. 准噶尔盆地玛湖凹陷三叠系百口泉组储层特征及油气成藏规律[J].岩性油气藏,2024,36(1):59-68. YIN Lu,XU Duonian,YUE Xingfu,et al. Reservoir characteristics and hydrocarbon accumulation rules of Triassic Baikouquan Formation in Mahu Sag,Junggar Basin[J]. Lithologic Reservoirs,2024,36(1):59-68.
[10] 支东明,曹剑,向宝力,等. 玛湖凹陷风城组碱湖烃源岩生烃机理及资源量新认识[J]. 新疆石油地质,2016,37(5):499-506. ZHI Dongming,CAO Jian,XIANG Baoli,et al. Fengcheng alkaline lacustrine source rocks of Lower Permian in Mahu sag in Junggar Basin:Hydrocarbon generation mechanism and petroleum resources reestimation[J]. Xinjiang Petroleum Geology,2016,37(5):499-506.
[11] 刘得光,周路,李世宏,等. 准噶尔盆地玛湖凹陷风城组烃源岩特征与生烃模式[J]. 沉积学报,2020,38(5):946-955. LIU Deguang,ZHOU Lu,LI Shihong,et al. Characteristics of source rocks and hydrocarbon generation models of Fengcheng Formation in Mahu Depression[J]. Acta Sedimentologica Sinica,2020,38(5):946-955.
[12] 龚德瑜,刘海磊,杨海波,等. 准噶尔盆地风城组烃源岩生气潜力与天然气勘探领域[J]. 新疆石油地质,2022,43(6):674-683. GONG Deyu,LIU Hailei,YANG Haibo,et al. Gas generation potential of Fengcheng Formation source rocks and exploration fields in Junggar Basin[J]. Xinjiang Petroleum Geology,2022, 43(6):674-683.
[13] 唐勇,胡素云,龚德瑜,等. 准噶尔盆地中央坳陷西部下二叠统风城组天然气勘探潜力与重点领域[J]. 石油勘探与开发, 2024,51(3):490-512. TANG Yong,HU Suyun,GONG Deyu,et al. Natural gas exploration potential and favorable targets of Permian Fengcheng Formation in the western central depression of Junggar Basin[J]. Petroleum Exploration and Development,2024,51(3):490-512.
[14] 何登发,吴松涛,赵龙,等. 环玛湖凹陷二叠-三叠系沉积构造背景及其演化[J]. 新疆石油地质,2018,39(1):35-46. HE Dengfa,WU Songtao,ZHAO Long,et al. Tectono-depositional setting and its evolution during Permian to Triassic around Mahu Sag,Junggar Basin[J]. Xinjiang Petroleum Geology, 2018,39(1):35-46.
[15] 宫博识,文华国,李丛林,等. 准噶尔盆地乌尔禾地区风城组沉积环境分析[J]. 岩性油气藏,2014,26(2):59-66. GONG Boshi,WEN Huaguo,LI Conglin,et al. Sedimentary environment of Fengcheng Formation in Urho area,Junggar Basin[J]. Lithologic Reservoirs,2014,26(2):59-66.
[16] 唐勇,郑孟林,王霞田,等. 准噶尔盆地玛湖凹陷风城组烃源岩沉积古环境[J]. 天然气地球科学,2022,33(5):677-692. TANG Yong,ZHENG Menglin,WANG Xiatian,et al. Sedimentary paleoenvironment of source rocks of Fengcheng Formation in Mahu Sag of Jungar Basin[J]. Natural Gas Geoscience, 2022,33(5):677-692.
[17] 石油工业标准化技术委员会石油地质勘探专业标准化委员会. 中华人民共和国石油天然气行业标准:烃源岩地球化学评价方法:SY/T 5735-2019[S].北京:中国标准出版社,2019. Geology Exploration Subcommittee of Petroleum Industrial Standardization Technical Committee. Petroleum and natural gas industry standard of the People's Republic of China:Geochemical method for source rocks evaluation:SY/T 5735-2019[S]. Beijing:Standards Press of China,2019.
[18] CHEN Zhuoheng,JIANG Chunqing. A revised method for organic porosity estimation in shale reservoirs using Rock-Eval data:Example from Duvernay Formation in the Western Canada Sedimentary Basin[J]. AAPG Bulletin,2016,100(3):405-422.
[19] 白雨,汪飞,牛志杰,等. 准噶尔盆地玛湖凹陷二叠系风城组烃源岩生烃动力学特征[J]. 岩性油气藏,2022,34(4):116-127. BAI Yu,WANG Fei,NIU Zhijie,et al. Hydrocarbon generation kinetics of source rocks of Permian Fengcheng Formation in Mahu Sag,Junggar Basin[J]. Lithologic Reservoirs,2022,34(4):116-127.
[20] 陈建平,赵文智,王招明,等. 海相干酪根天然气生成成熟度上限与生气潜力极限探讨:以塔里木盆地研究为例[J]. 科学通报,2007,52(增刊Ⅰ):95-100. CHEN Jianping,ZHAO Wenzhi,WANG Zhaoming,et al. Discussion on the upper limit of gas generation maturity and the limit of gas generation potential of marine kerogen:A case study of Tarim Basin[J]. Chinese Science Bulletin,2007,52(Suppl Ⅰ):95-100.
[21] 赵文智,王兆云,张水昌,等. 有机质"接力成气"模式的提出及其在勘探中的意义[J].石油勘探与开发,2005,32(2):1-7. ZHAO Wenzhi,WANG Zhaoyun,ZHANG Shuichang,et al. Successive generation of natural gas from organic materials and its significance in future exploration[J]. Petroleum Exploration and Development,2005,32(2):1-7.
[22] 戴金星,宋岩,张厚福. 中国大中型气田形成的主要控制因素[J]. 中国科学(D辑:地球科学),1996,26(6):481-487. DAI Jinxing,SONG Yan,ZHANG Houfu. Main controlling factors of large and middle size gas fields in China[J]. Science in China(Series D:Earth Science),1996,26(6):481-487.
[23] 李剑,王晓波,魏国齐,等.天然气基础地质理论研究新进展与勘探领域[J]. 天然气工业,2018,38(4):37-45. LI Jian,WANG Xiaobo,WEI Guoqi,et al. New progress in basic natural gas geological theories and future exploration targets in China[J]. Natural Gas Industry,2018,38(4):37-45.
[24] 张林,黄光辉,李剑,等. 原油裂解气影响因素及判识[J].中国矿业,2014,23(增刊1):157-198. ZHANG Lin,HUANG Guanghui,LI Jian,et al. Influencing factors and identification of oil-cracking gas[J]. China Mining Magazine,2014,23(Suppl 1):157-198.
[25] 李君,吴晓东,王东良,等.裂解气成因特征及成藏模式探讨[J]. 天然气地球科学,2013,24(3):520-528. LI Jun,WU Xiaodong,WANG Dongliang,et al. The genetic feature and reservoir forming mode of cracked gas in China[J]. Natrural Gas Geoscience,2013,24(3):520-528.
[26] SCHENK H J,DI PRIMIO R,HORSFIELD B. The conversion of oil into gas in petroleum reservoirs. Part 1:Comparative kinetic investigation of gas generation from crude oils of lacustrine,marine and fluviodeltaic origin by programmed -temperature closed-system pyrolysis[J]. Organic Geochemistry,1997, 26(7/8):467-481.
[27] 王民,黄靖轩,卢双舫,等.我国不同原油裂解成气动力学研究[J].海相油气地质,2017,22(2):8-16. WANG Min,HUANG Jingxuan,LU Shuangfang,et al. Kinetic features of gas oil cracking for the different types of crude oil in China[J]. Marine Origin Petroleum Geology,2017,22(2):8-16.
[28] 马卫,李剑,王东良,等. 烃源岩排烃效率及其影响因素[J]. 天然气地球科学,2016,27(9):1742-1751. MA Wei,LI Jian,WANG Dongliang,et al. Hydrocarbon expulsion efficiency of source rocks and its influencing factors[J]. Natrural Gas Geoscience,2016,27(9):1742-1751.
[29] 赵文智,王兆云,张水昌,等. 不同地质环境下原油裂解生气条件[J]. 中国科学(D辑:地球科学),2007,37(增刊Ⅱ):63-68. ZHAO Wenzhi,WANG Zhaoyun,ZHANG Shuichang,et al. The condition of oil cracking into gas in different geologic environment[J]. Science in China(Series D:Earth Science),2007, 37(Suppl Ⅱ),63-68.
[30] JARVIE D M. Shale resource systems for oil and gas:Part 2:Shale-oil resource systems[M]. Tulsa:American Association of Petroleum Geologists,2012:89-119.
[31] BEHAR F,KRESSMANN S,RUDKIEWICZ J L,et al. Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking[J]. Organic Geochemistry,1992, 19(1/3):173-189.
[32] 雷海艳,郭佩,孟颖,等. 玛湖凹陷二叠系风城组页岩油储层孔隙结构及分类评价[J]. 岩性油气藏,2022,34(3):142-153. LEI Haiyan,GUO Pei,MENG Ying,et al. Pore structure and classification evaluation of shale oil reservoirs of Permian Fengcheng Formation in Mahu Sag[J]. Lithologic Reservoirs, 2022,34(3):142-153.
[33] 邹阳,戚艳平,宋栋,等.玛页1井风城组页岩油藏地质特征及甜点评价[J]. 新疆石油地质,2022,43(6):714-723. ZOU Yang,QI Yanping,SONG Dong,et al. Geological characteristics and sweet spot evaluation of shale oil reservoir in Fengcheng Formation in Well Maye-1[J]. Xinjiang Petroleum Geology,2022,43(6):714-723.
[1] 王青, 田冲, 罗超, 张景缘, 杨雪, 吴伟, 陶夏妍. 四川盆地遂宁—合江地区二叠系龙潭组煤岩气储层特征及勘探前景[J]. 岩性油气藏, 2025, 37(4): 26-37.
[2] 王敬朝, 金玮, 常立朋, 董忠良, 王高文. 川中合川—潼南地区二叠系茅三段岩溶储层特征及油气成藏过程[J]. 岩性油气藏, 2025, 37(4): 63-72.
[3] 李振明, 贾存善, 王斌, 宋振响, 邱岐, 王继远, 徐陈杰, 崔钰瑶. 准噶尔盆地东部石钱滩凹陷石炭系石钱滩组烃源岩特征及资源潜力[J]. 岩性油气藏, 2025, 37(4): 115-126.
[4] 尹照普, 朱峰, 周志尧, 王丽丽, 刘晓晔, 娜孜伊曼, 汪钰婷, 黄大瑞. 准噶尔盆地莫南斜坡侏罗系西山窑组油气成藏条件及富集主控因素[J]. 岩性油气藏, 2025, 37(3): 33-46.
[5] 邓高山, 董雪梅, 余海涛, 张洁, 岳喜伟, 任军民, 姜涛. 准噶尔盆地沙湾凹陷三叠系百口泉组油气成藏条件及勘探潜力[J]. 岩性油气藏, 2025, 37(3): 59-72.
[6] 杨雪, 杨雨然, 张景缘, 田鹤, 王青, 宋芳, 张赛柯, 陈瑶. 川北地区开江—梁平海槽二叠系海相页岩特征及优质储层形成机制[J]. 岩性油气藏, 2025, 37(3): 108-119.
[7] 陈怀毅, 李龙, 白冰, 岳军培, 康荣, 张兴强. 渤海湾盆地莱州湾凹陷古近系沙四段走滑盐拱带特征及控藏作用[J]. 岩性油气藏, 2025, 37(3): 120-128.
[8] 赵艾琳, 赖强, 樊睿琦, 吴煜宇, 陈杰, 严双栏, 张家伟, 廖广志. 基性火山岩核磁共振响应机理及孔隙结构评价方法——以四川盆地西南部二叠系峨眉山玄武岩组为例[J]. 岩性油气藏, 2025, 37(3): 153-164.
[9] 林鹤, 杜金玲, 徐刚, 容娇君, 梁雪莉, 衡峰, 郭俊宁, 马梦茜. 随机森林算法在水力压裂套管变形预测中的应用[J]. 岩性油气藏, 2025, 37(3): 185-193.
[10] 李想, 付磊, 魏璞, 李俊飞, 徐港, 曹倩倩, 钟杨, 王振鹏. 沉积古地貌恢复及古地貌对沉积体系的控制作用——以准噶尔盆地石西地区三叠系百口泉组为例[J]. 岩性油气藏, 2025, 37(2): 38-48.
[11] 李亚, 王尉, 赵立可, 刘冉, 张玺华, 陈延贵, 黄天海, 肖笛. 四川盆地德阳—绵阳凹陷南缘二叠系栖霞组沉积演化及有利储层分布[J]. 岩性油气藏, 2025, 37(2): 81-91.
[12] 胡鑫, 朱筱敏, 金绪铃, 黄成, 周越, 程长领, 修金磊, 任新成. 准噶尔盆地永进地区侏罗系齐古组浅水辫状河三角洲沉积特征[J]. 岩性油气藏, 2025, 37(2): 115-126.
[13] 何星, 金玮, 张帆, 霍秋立, 李跃, 鲍俊驰, 刘璐, 曾庆兵. 海拉尔盆地乌尔逊凹陷白垩系铜钵庙组原油地球化学特征及来源[J]. 岩性油气藏, 2025, 37(1): 41-52.
[14] 陈鹏, 武小宁, 林煜, 钟厚财, 张洁, 黄友华, 岳纹, 冷平. 准噶尔盆地车排子凸起石炭系构造特征与油气富集规律[J]. 岩性油气藏, 2025, 37(1): 68-77.
[15] 刘志峰, 朱小二, 柳广弟, 王祥, 李泽坤, 吴璇, 梁禹洋. 渤中凹陷西洼古近系和新近系油气成藏差异对比[J]. 岩性油气藏, 2025, 37(1): 78-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!