岩性油气藏 ›› 2025, Vol. 37 ›› Issue (6): 112.doi: 10.12108/yxyqc.20250601
• 地质勘探 • 上一篇
陈志宏1, 吕正祥2,3, 胡高伟1, 高梦天1, 陈亚兵1, 金峰1, 孟宏宇1
CHEN Zhihong1, LYU Zhengxiang2,3, HU Gaowei1, GAO Mengtian1, CHEN Yabing1, JIN Feng1, MENG Hongyu1
摘要: 利用流体包裹体、生烃热模拟、TOC、物性、薄片等分析化验资料,结合埋藏史-热史,系统研究了莺歌海盆地莺东斜坡区中新统三亚组的成藏地质条件、成藏过程以及成藏主控因素,建立了成藏模式。研究结果表明:①莺歌海盆地莺东斜坡区中新统三亚组烃源岩有机质类型以腐殖型干酪根为主,北段、南段TOC平均值分别为0.77% 和1.21%。渐新统煤系烃源岩TOC平均值为1.41%;莺东斜坡带渐新统、中新统烃源岩具有早期浅埋、长期处于未成熟—低成熟阶段,晚期快速深埋、短期快速进入成熟—高成熟演化阶段的特征,南段近凹区烃源岩演化程度最高,其次是南段斜坡区、中段近凹区和北段,中段斜坡区演化程度最低;北段储层平均孔隙度为13.56%,渗透率主峰为0.1~1.0 mD,南段平均孔隙度为11.53%,渗透率主峰为1.0~10.0 mD,渗透性明显优于北段,储集空间主要为溶孔;持续活动的走滑断层、派生裂缝及物性相对较好的规模砂体构成的复合输导体系保障了天然气的高效立体运移。②三亚组天然气组分以CH4为主,体积分数中值为83.16%,以煤型气为主,北段主要来自三亚组及下伏渐新统,南段天然气成熟度为1.3%~1.7%,明显高于北段,主要来自下伏渐新统。③三亚组气藏具有“多期持续充注,晚期成藏为主”的特征,南段、北段均经历了3期油气充注,主充注期为更新世。南段油气主充注时间(3.5~1.0 Ma)早于北段(2.2~1.0 Ma),且充注丰度高于北段。④三亚组具有“走滑断层控烃、物源叠合构造活动控储、走滑断层活动叠合裂缝超压活化控输”的成藏特征。烃源岩演化、输导效率、储层特征是天然气成藏的主控因素。
中图分类号:
| [1] JIA Chengzao, PANG Xiongqi. Research processes and main development directions of deep hydrocarbon geological theories[J]. Acta Petrolei Sinica, 2015, 36(12): 1457-1469. 贾承造, 庞雄奇. 深层油气地质理论研究进展与主要发展方向[J]. 石油学报, 2015, 36(12): 1457-1469. [2] PAN Rong, ZHU Xiaomin, WANG Xingxing, et al. Advancement on formation mechanism of deep effective clastic reservoir[J]. Lithologic Reservoirs, 2014, 26(4): 73-80. 潘荣, 朱筱敏, 王星星, 等. 深层有效碎屑岩储层形成机理研究进展[J]. 岩性油气藏, 2014, 26(4): 73-80. [3] LI Yang, XUE Zhaojie, CHENG Zhe, et al. Progress and development directions of deep oil and gas exploration and development in China[J]. China Petroleum Exploration, 2020, 25(1): 45-57. 李阳, 薛兆杰, 程喆, 等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探, 2020, 25(1): 45-57. [4] CHEN Peng, WU Xiaoning, LIN Yu, et al. Carboniferous structural characteristics and hydrocarbon accumulation regularity of Chepaizi Uplift in Junggar Basin[J]. Lithologic Reservoirs, 2025, 37(1): 68-77. 陈鹏, 武小宁, 林煜, 等. 准噶尔盆地车排子凸起石炭系构造特征与油气富集规律[J]. 岩性油气藏, 2025, 37(1): 68-77. [5] XIONG Liang, LONG Ke, CAO Qinming, et al. Multilayer accumulation conditions and key technologies for exploration and development of the West Sichuan gas field in Sichuan Basin[J]. Acta Petrolei Sinica, 2024, 45(3): 595-614. 熊亮, 隆轲, 曹勤明, 等. 四川盆地川西气田多层系成藏条件及勘探开发关键技术[J]. 石油学报, 2024, 45(3): 595-614. [6] SHI Hesheng, WANG Qingbin, WANG Jun, et al. Discovery and exploration significance of large condensate gas fields in BZ19-6 structure in deep Bozhong sag[J]. China Petroleum Exploration, 2019, 24(1): 36-45. 施和生, 王清斌, 王军, 等. 渤中凹陷深层渤中19-6构造大型凝析气田的发现及勘探意义[J]. 中国石油勘探, 2019, 24 (1): 36-45. [7] XIE Huiwen, ZHANG Liang, WANG Bin, et al. Characteristics of Triassic paleostructure and their control on sedimentation in Kuqa Depression, Tarim Basin[J]. Lithologic Reservoirs, 2025, 37(3): 13-22. 谢会文, 张亮, 王斌, 等. 塔里木盆地库车坳陷三叠纪古构造特征及对沉积的控制作用[J]. 岩性油气藏, 2025, 37(3): 13-22. [8] WU Keqiang, PEI Jianxiang, HU Lin, et al. Accumulation model and exploration direction of medium-large gas fields in Yinggehai Basin[J]. Acta Petrolei Sinica, 2023, 44(12): 2200-2216. 吴克强, 裴健翔, 胡林, 等. 莺歌海盆地大-中型气田成藏模式及勘探方向[J]. 石油学报, 2023, 44(12): 2200-2216. [9] YANG Kaile, HE Shenglin, YANG Zhaoqiang, et al. Diagenesis characteristics of tight sandstone reservoirs with high temperature, overpressure and high CO2 content: A case study of Neogene Meishan-Huangliu Formation in LD10 area, Yinggehai Basin[J]. Lithologic Reservoirs, 2023, 35(1): 83-95. 杨楷乐, 何胜林, 杨朝强, 等. 高温-超压-高CO2背景下致密砂岩储层成岩作用特征: 以莺歌海盆地LD10区新近系梅山组-黄流组为例[J]. 岩性油气藏, 2023, 35(1): 83-95. [10] CHEN Zhihong, CHEN Dianyuan, YING Mingxiong. Study on characteristic of the sand bodies of Huangliu Formation in DF13 area, Yinggehai Basin[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2014, 36(1): 51-57. 陈志宏, 陈殿远, 应明雄. 莺歌海盆地DF13区黄流组沟道砂体特征研究[J]. 西南石油大学学报(自然科学版), 2014, 36 (1): 51-57. [11] XIE Yuhong, LI Xushen, TONG Chuanxin, et al. High temperature and high pressure gas enrichment condition, distribution law and accumulation model in central diapir zone of Yinggehai basin[J]. China Offshore Oil and Gas, 2015, 27(4): 1-12. 谢玉洪, 李绪深, 童传新, 等. 莺歌海盆地中央底辟带高温高压天然气富集条件、分布规律和成藏模式[J]. 中国海上油气, 2015, 27(4): 1-12. [12] LI Xushen, ZHANG Yingzhao, YANG Xibing, et al. New understandings and achievements of natural gas exploration in Yinggehai-Qiongdongnan basin, South China Sea[J]. China Offshore Oil and Gas, 2017, 29(6): 1-11. 李绪深, 张迎朝, 杨希冰, 等. 莺歌海-琼东南盆地天然气勘探新认识与新进展[J]. 中国海上油气, 2017, 29(6): 1-11. [13] GUO Xiaoxiao, XU Xinde, GAN Jun, et al. Causes of gas geochemical differences in the ultra-high pressure gas field, the eastern slope of Yinggehai Basin[J]. Geological Journal of China Universities, 2022, 28(5): 717-725. 郭潇潇, 徐新德, 甘军, 等. 莺歌海盆地东斜坡超高压气田天然气地球化学特征差异与成因[J]. 高校地质学报, 2022, 28 (5): 717-725. [14] ZHANG Xinshun, HUANG Zhilong, ZHU Jiancheng, et al. Reservoir characteristics and causes of low-abundance natural gas of the Haikou A block, Yinggehai basin[J]. Journal of Northeast Petroleum University, 2015, 39(1): 1-8. 张新顺, 黄志龙, 朱建成, 等. 莺歌海盆地海口A区储层特征与天然气低丰度影响因素[J]. 东北石油大学学报, 2015, 39 (1): 1-8. [15] SHEN Jiao, LI Hongyi, WU Aijun, et al. Sedimentary characteristics and the controlling factors of reservoir in the first member of Sanya Formation in the HK29 area, Yingbei District, Yinggehai Basin[J]. Marine Geology Frontiers, 2025, 41(1): 44-56. 沈娇, 李宏义, 武爱俊, 等. 莺歌海盆地莺北区HK29区三亚组一段沉积特征及储层主控因素[J]. 海洋地质前沿, 2025, 41(1): 44-56. [16] JIN Bo, ZHANG Jinchuan, LIU Zhen, et al. Different transformation behaviors of natural gas and significance for gas accumulation in Yinggehai Basin[J]. Natural Gas Geoscience, 2011, 22(4): 642-648. 金博, 张金川, 刘震, 等. 莺歌海盆地天然气差异输导特征及成藏意义[J]. 天然气地球科学, 2011, 22(4): 642-648. [17] ZHOU Jie, HU Lin, HU Gaowei, et al. Characteristics of middledeep faults in the southern segment of the eastern belt of Yinggehai Basin and their controlling effect on natural gas accumulation[J]. Earth Science, 2023, 48(8): 3021-3030. 周杰, 胡林, 胡高伟, 等. 莺歌海盆地莺东斜坡带南段中深层断裂特征及控藏作用[J]. 地球科学, 2023, 48(8): 3021-3030. [18] WU Keqiang, PEI Jianxiang, HU Lin, et al. New progress and thinking on oil and gas exploration in Yinggehai-Qiongdongnan Basin[J]. China Offshore Oil and Gas, 2024, 36(5): 1-13. 吴克强, 裴健翔, 胡林, 等. 莺歌海-琼东南盆地油气勘探新进展与思考[J]. 中国海上油气, 2024, 36(5): 1-13. [19] LI Xushen, YANG Jihai, FAN Caiwei, et al. New progress and key technologies for high temperature and overpressure natural gas exploration in the northern part of South China Sea: Taking the Ledong slope belt of Yinggehai Basin as an example[J]. China Offshore Oil and Gas, 2020, 32(1): 23-31. 李绪深, 杨计海, 范彩伟, 等. 南海北部海域高温超压天然气勘探新进展与关键技术: 以莺歌海盆地乐东斜坡带为例[J]. 中国海上油气, 2020, 32(1): 23-31. [20] LIU Haiyu, FAN Caiwei, TUO Lei, et al. Origin and accumulation characteristics of natural gas in the middle and north section of eastern slope, Yinggehai sag[J]. China Offshore Oil and Gas, 2022, 34(2): 25-34. 刘海钰, 范彩伟, 庹雷, 等. 莺歌海凹陷东斜坡中北段天然气成因及成藏特征[J]. 中国海上油气, 2022, 34(2): 25-34. [21] JIA Ru, FU Xiaofei, FAN Caiwei, et al. Relationship between hydraulic fracture and natural gas accumulation in over-pressured basin: A case study on the LD-A Gas Field in the Ledong slope belt of the Yinggehai Basin[J]. Natural Gas Industry, 2024, 44 (6): 23-32. 贾茹, 付晓飞, 范彩伟, 等. 超压盆地水力破裂与天然气成藏的关系: 以莺歌海盆地乐东斜坡区LD-A气田为例[J]. 天然气工业, 2024, 44(6): 23-32. [22] LI Xiaotang, HE Jiaxiong, ZHANG Wei. The synthetic evaluation of Paleogene and Neogene source rocks and the favorable exploration target in Yinggehai Basin[J]. Marine Geology & Quaternary Geology, 2016, 36(2): 129-142. 李晓唐, 何家雄, 张伟. 莺歌海盆地古新近系烃源条件与有利油气勘探方向[J]. 海洋地质与第四纪地质, 2016, 36(2): 129-142. [23] PEI Jianxiang, GUO Xiaoxiao, XUE Haitao, et al. Environment and controlling factors of the Miocene marine source rocks in the Yinggehai Basin[J]. Oil & Gas Geology, 2023, 44(4): 937-945. 裴健翔, 郭潇潇, 薛海涛, 等. 莺歌海盆地中新统海相烃源岩形成环境及控制因素[J]. 石油与天然气地质, 2023, 44(4): 937-945. [24] XU Jianyong, ZHAO Niubin, XU Shikun, et al. Main controlling factors and development model of the Miocene marine source rocks in Yinggehai Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 54-63. 徐建永, 赵牛斌, 徐仕琨, 等. 莺歌海盆地中新统海相烃源岩发育主控因素及模式[J]. 地质科技通报, 2021, 40(2): 54-63. [25] HUANG Baojia, HUANG Heting, LI Li, et al. Characteristics of marine source rocks and effect of high temperature and overpressure to organic matter maturation in Yinggehai-Qiongdongnan Basins[J]. Marine Origin Petroleum Geology, 2010, 15(3): 11-18. 黄保家, 黄合庭, 李里, 等. 莺-琼盆地海相烃源岩特征及高温高压环境有机质热演化[J]. 海相油气地质, 2010, 15(3): 11-18. [26] XIE Mingxian, CHEN Guangpo, LI Juan, et al. Hydrocarbon generation kinetics of source rocks of the first member of Nantun Formation in peripheral sags of Hailar Basin[J]. Lithologic Reservoirs, 2020, 32(3): 24-33. 谢明贤, 陈广坡, 李娟, 等. 海拉尔盆地外围凹陷南一段烃源岩生烃动力学研究[J]. 岩性油气藏, 2020, 32(3): 24-33. [27] GUO Tonglou, XIONG Liang, YANG Yingtao, et al. From reservoir, source to carrier beds exploration: A case study of tight sandstone gas in Xujiahe Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2024, 45(7): 1078-1091. 郭彤楼, 熊亮, 杨映涛, 等. 从储层、烃源岩到输导体勘探: 以四川盆地须家河组致密砂岩气为例[J]. 石油学报, 2024, 45 (7): 1078-1091. [28] JIA Chengzao, PANG Xiongqi, SONG Yan. The mechanism of unconventional hydrocarbon formation: Hydrocarbon self-containment and intermolecular forces[J]. Petroleum Exploration and Development, 2021, 48(3): 437-452. 贾承造, 庞雄奇, 宋岩. 论非常规油气成藏机理: 油气自封闭作用与分子间作用力[J]. 石油勘探与开发, 2021, 48(3): 437-452. [29] TIAN Guangrong, WANG Jiangong, SUN Xiujian, et al. Hydrocarbon accumulation differences and main controlling factors of Jurassic petroleum system in Altun piedmont of Qaidam Basin[J]. Lithologic Reservoirs, 2021, 33(1): 131-144. 田光荣, 王建功, 孙秀建, 等. 柴达木盆地阿尔金山前带侏罗系含油气系统成藏差异性及其主控因素[J]. 岩性油气藏, 2021, 33(1): 131-144. [30] DAI Jinxing. Characteristics of hydrocarbon isotopes in natural gas and identification of various natural gases[J]. Natural Gas Geoscience, 1993, 4(2/3): 1-40. 戴金星. 天然气碳氢同位素特征和各类天然气鉴别[J]. 天然气地球科学, 1993, 4(2/3): 1-40. [31] HE Jialing, TIAN Yaming, ZHU Xiang, et al. Geochemical characteristics and source analysis of natural gas in Middle Permian Maokou formation in Northwest Sichuan Province[J]. Contributions to Geology and Mineral Resources Research, 2025, 40(1): 63-72. 何佳玲, 田亚铭, 朱祥, 等. 川西北地区二叠系茅口组气藏天然气地球化学特征及来源分析[J]. 地质找矿论丛, 2025, 40 (1): 63-72. [32] DONG Weiliang, HUANG Baojia. Identification marks and source discrimination of the coal type gas in YGH and QDN basins of South China Sea[J]. Natural Gas Industry, 2000, 20(1): 23-27. 董伟良, 黄保家. 南海莺-琼盆地煤型气的鉴别标志及气源判识[J]. 天然气工业, 2000, 20(1): 23-27. [33] GUO Tonglou, XIONG Liang, YE Sujuan, et al. Theory and practice of unconventional gas exploration in carrier beds: Insight from the breakthrough of new type of shale gas and tight gas in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2023, 50(1): 24-37. 郭彤楼, 熊亮, 叶素娟, 等. 输导层(体)非常规天然气勘探理论与实践: 四川盆地新类型页岩气与致密砂岩气突破的启示[J]. 石油勘探与开发, 2023, 50(1): 24-37. [34] WANYAN Ze, LONG Guohui, YANG Wei, et al. Hydrocarbon accumulation and evolution characteristics of Paleogene in Yingxiongling area, Qaidam Basin[J]. Lithologic Reservoirs, 2023, 35(2): 94-102. 完颜泽, 龙国徽, 杨巍, 等. 柴达木盆地英雄岭地区古近系油气成藏过程及其演化特征[J]. 岩性油气藏, 2023, 35(2): 94-102. [35] ZHANG Jianxin, FAN Caiwei, TAN Jiancai, et al. Evolution characteristics of sedimentary system in Yinggehai Basin in Miocene and its exploration significance[J]. Geological Science and Technology Information, 2019, 38(6): 51-59. 张建新, 范彩伟, 谭建财, 等. 莺歌海盆地中新世沉积体系演化特征及勘探意义[J]. 地质科技情报, 2019, 38(6): 51-59. [36] WAN Zhifeng, XIA Bin, XU Lifeng, et al. Study on the dynamic mechanism of tectonic evolution in Yinggehai Basin[J]. Marine Science Bulletin, 2010, 29(6): 654-657. 万志峰, 夏斌, 徐力峰, 等. 莺歌海盆地构造演化动力学机制探讨[J]. 海洋通报, 2010, 29(6): 654-657. |
| [1] | 刘海钰, 胡林, 刘兵, 庹雷, 李虎, 江汝锋, 吴仕玖. 琼东南盆地深水区中新统梅山组超压成因与天然气成藏特征[J]. 岩性油气藏, 2025, 37(5): 70-82. |
| [2] | 尹艳树, 李建琴, 吴伟, 王立鑫, 谭先锋. 东营凹陷林东地区中新统馆陶组网状河沉积特征及储层构型[J]. 岩性油气藏, 2025, 37(4): 1-16. |
| [3] | 黄向胜, 闫琢玉, 张东峰, 黄合庭, 罗程飞. 琼东南盆地Ⅱ号断裂带新生界多期热流体活动与天然气运聚特征[J]. 岩性油气藏, 2024, 36(5): 67-76. |
| [4] | 洪国良, 王红军, 祝厚勤, 白振华, 王雯雯. 南苏门答腊盆地J区块中新统Gumai组岩性油气藏成藏条件及有利区带[J]. 岩性油气藏, 2023, 35(6): 138-146. |
| [5] | 朱秀香, 赵锐, 赵腾. 塔里木盆地顺北1号断裂带走滑分段特征与控储控藏作用[J]. 岩性油气藏, 2023, 35(5): 131-138. |
| [6] | 杨楷乐, 何胜林, 杨朝强, 王猛, 张瑞雪, 任双坡, 赵晓博, 姚光庆. 高温-超压-高CO2背景下致密砂岩储层成岩作用特征——以莺歌海盆地LD10区新近系梅山组-黄流组为例[J]. 岩性油气藏, 2023, 35(1): 83-95. |
| [7] | 范彩伟, 贾茹, 柳波, 付晓飞, 侯静娴, 靳叶军. 莺歌海盆地中央坳陷带成藏体系的盖层评价及控藏作用[J]. 岩性油气藏, 2023, 35(1): 36-48. |
| [8] | 段瑞凯, 张旭, 郭富欣, 陈国宁, 胡光义, 邹婧芸. 深水复合朵体内部沉积结构及其叠置模式——以尼日尔三角洲盆地Akpo油田中新统D油组为例[J]. 岩性油气藏, 2022, 34(5): 110-120. |
| [9] | 王立锋, 宋瑞有, 陈殿远, 徐涛, 潘光超, 韩光明. 莺歌海盆地D13区新近系黄流组大型海底扇地震识别及含气性预测[J]. 岩性油气藏, 2022, 34(4): 42-52. |
| [10] | 张晓钊, 吴静, 彭光荣, 许新明, 郑小波. 恩平凹陷南带中新统河流-波浪联控沉积体系及其意义[J]. 岩性油气藏, 2022, 34(2): 95-104. |
| [11] | 李伟, 刘平, 艾能平, 邵远, 侯静娴. 莺歌海盆地乐东地区中深层储层发育特征及成因机理[J]. 岩性油气藏, 2020, 32(1): 19-26. |
| [12] | 刘为, 杨希冰, 张秀苹, 段亮, 邵远, 郝德峰. 莺歌海盆地东部黄流组重力流沉积特征及其控制因素[J]. 岩性油气藏, 2019, 31(2): 75-82. |
| [13] | 蔡佳. 琼东南盆地长昌凹陷新近系三亚组沉积相[J]. 岩性油气藏, 2017, 29(5): 46-54. |
| [14] | 韩光明,潘光超,付 琛,罗 琪,邵 远,汪 锐. 含气储层及盖层速度变化对地震响应和AVO 类型的影响[J]. 岩性油气藏, 2016, 28(2): 107-113. |
| [15] | 王明春,李德郁,张海义,李新琦. 渤海西部沙北构造带断裂特征及其对沉积的控制作用[J]. 岩性油气藏, 2015, 27(5): 167-171. |
|
||