岩性油气藏 ›› 2025, Vol. 37 ›› Issue (6): 140–150.doi: 10.12108/yxyqc.20250613

• 地质勘探 • 上一篇    

“断缝体”致密砂岩复杂网状裂缝地震预测技术——以四川盆地北部三叠系须家河组为例

缪志伟1, 李世凯1,2, 张文军1, 肖伟1, 刘明1, 于童1   

  1. 1. 中国石油化工股份有限公司 勘探分公司, 成都 610041;
    2. 成都理工大学 地球物理学院, 成都 610059
  • 收稿日期:2025-01-14 修回日期:2025-03-10 发布日期:2025-11-07
  • 第一作者:缪志伟(1987—),男,硕士,副研究员,主要从事四川盆地油气地球物理勘探领域研究工作。地址:(610041)四川省成都市高新区吉泰路688号中石化西南科研办公基地。Email:mzw495342920@163.com。
  • 基金资助:
    中国石油化工股份有限公司 B2 科技项目“致密碎屑岩优质储层地震预测技术应用研究”(编号:YT24005)资助。

Seismic prediction technology for complex network fractures in fault-fracture reservoir of tight sandstones: A case study of Triassic Xujiahe Formation in northern Sichuan Basin

MIAO Zhiwei1, LI Shikai1,2, ZHANG Wenjun1, XIAO Wei1, LIU Ming1, YU Tong1   

  1. 1. Exploration Company, Sinopec, Chengdu 610041, China;
    2. College of Geophysics, Chengdu University of Technology, Chengdu 610059, China
  • Received:2025-01-14 Revised:2025-03-10 Published:2025-11-07

摘要: 通过“三步法”复杂网状裂缝地震综合预测技术,对四川盆地北部三叠系须家河组致密砂岩“断缝体”储层中不同方位、不同期次的裂缝发育强度和规模进行了地震定量预测。研究结果表明:①地震预测技术流程为,利用反褶积广义S变换开展高分辨分频蚂蚁追踪,通过构建离散网格模型预测裂缝期次和方位;根据衰减各向异性理论建立方位衰减弹性阻抗QVAZ方程,结合组稀疏反演完成对裂缝密度的叠前定量预测;综合上述2种技术进行优势互补与叠合分析,完成对复杂网状裂缝的空间描述。②川北通江地区三叠系须家河组“断缝体”致密砂岩储层中裂缝主要发育在断层附近,且走向与断层走向较一致,以构造成因裂缝为主,局部背斜构造的地层发育相对稳定,褶皱形成过程中伴生的张裂缝并非“断缝体”储层“甜点”区,而多期规模裂缝的交会部位是规模复杂网状裂缝发育的有利区。③该方法可对低序级断层进行高清识别,减少了复杂构造区低信噪比及岩性突变的影响,规避了局部地层褶皱可能带来的裂缝假象,降低了传统方法对地震资料信噪比的依赖,预测的层间微裂缝分辨率高,预测结果与实钻井的FMI解释、测试产能吻合度较高,依据该方法新部署的M15井在须四段试气获10.35×104 m3/d工业气流。

关键词: “断缝体”储层, 致密砂岩, 复杂网状裂缝, 各向异性, 时频分析, 地震反演, 蚂蚁追踪, 须家河组, 三叠系, 川北地区

Abstract: Through a"three-step"complex network fracture seismic comprehensive prediction technology, the seismic quantitative prediction of fracture development intensity and scale in different orientations and phases of the tight sandstone"fault-fracture body"reservoir of Xujiahe Formation in northern Sichuan Basin was carried out.The results show that: (1) The technical workflow of seismic prediction is as follows: Utilize high-resolution frequency-division ant tracking based on deconvolution generalized S-transform, to predict fracture phases and orientations by constructing a discrete grid model. Establish QVAZ equation for azimuthal attenuation elastic impedance based on the theory of attenuation anisotropy, and combine group sparse inversion to achieve prestack quantitative prediction of fracture density. Integrating the above two technologies for complementary advantages and overlapping analysis, complete the spatial description of complex network fractures.(2) The fractures in the "fault-fracture body" tight sandstone reservoir of Triassic Xujiahe Formation in Tongjiang area of northern Sichuan Basin mainly develop near faults, and their direction align with fault trends. These fractures are mainly of tectonic origin, local anticlines strata display relatively stable development. The tensional fractures associated with the folding process are not the sweet spots of the "fault-fracture body"reservoir, but the intersection of multiple large-scale fractures is a favorable area for the development of complex network fractures.(3) This method can perform high-definition identification of low sequence level faults, reducing the impact of low signal-to-noise ratio and lithological mutations in complex structural areas, avoiding the false appearance of fractures that may be caused by local stratigraphic folds, reducing the dependence of traditional methods on seismic data signal-to-noise ratio, and predicted interlayer micro-fractures with high resolution. The predicted results are in good agreement with the FMI interpretation and testing productivity of actual drilling. Based on this method, the newly deployed well M15 obtained industrial gas flow of 10.35×104 m3/d in the fourth member of Xujiahe Formation during gas testing.

Key words: “fault-fracture body” reservoir, tight sandstone, complex network fracture, anisotropy, time-frequency analysis, seismic inversion, ant tracking, Xujiahe Formation, Triassic, northern Sichuan Basin

中图分类号: 

  • TE122
[1] YIN Xingyao, MA Zhengqian, ZONG Zhaoyun, et al. Review of fracture prediction driven by the seismic rock physics theory (Ⅱ): Fracture prediction from five-dimensional seismic data[J]. Geophysical Prospecting for Petroleum, 2022, 61(3): 373-391. 印兴耀, 马正乾, 宗兆云, 等. 地震岩石物理驱动的裂缝预测技术研究现状与进展(Ⅱ): 五维地震裂缝预测技术[J]. 石油物探, 2022, 61(3): 373-391.
[2] MALLICK S, CRAFT K L, MEISTER L J, et al. Determination of the principal directions of azimuthal anisotropy from P-wave seismic data[J]. Geophysics, 1998, 63(2): 692-706.
[3] AL-MARZONG M, NSEVES A, KIN J, et al. P-wave anisotropy from azimuthal velocity and AVO using wide-azimuthal 3D seismic data[C]//Society of exploration geophysicists SEG technical program expanded abstracts 2004. Tulsa: Society of Exploration Geophysicists, 2004: 131-134.
[4] RÜGER A. Reflection coefficients and azimuthal AVO analysis in anisotropic media[C]//FITTERMAN D V. Geophysical monograph series No. 10. Tulsa: Society of Exploration Geophysicists, 2002.
[5] DOWNTON J E, ROURE B. Interpreting azimuthal Fourier coefficients for anisotropic and fracture parameters[J]. Interpretation, 2015, 3(3): ST9-ST27.
[6] PAN Xinpeng, ZHANG Guangzhi, YIN Xingyao. Probabilistic seismic inversion for reservoir fracture and petrophysical parameters driven by rock-physics models[J]. Chinese Journal of Geophysics, 2018, 61(2): 683-696. 潘新朋, 张广智, 印兴耀. 岩石物理驱动的储层裂缝参数与物性参数概率地震反演方法研究[J]. 地球物理学报, 2018, 61 (2): 683-696.
[7] CHEN Chao, YIN Xingyao, LIU Xiaojing, et al. Fracture density inversion based on azimuthal anisotropy and its application[J]. Chinese Journal of Geophysics, 2022, 65(1): 371-383. 陈超, 印兴耀, 刘晓晶, 等. 基于方位各向异性的裂缝密度反演方法及应用[J]. 地球物理学报, 2022, 65(1): 371-383.
[8] CHEN Huaizhen, YIN Xingyao, GAO Jianhu, et al. Seismic inversion for underground fractures detection based on effective anisotropy and fluid substitution[J]. Scientia Sinica(Terrae), 2015, 45(5): 589-600. 陈怀震, 印兴耀, 高建虎, 等. 基于等效各向异性和流体替换的地下裂缝地震预测方法[J]. 中国科学: 地球科学, 2015, 45 (5): 589-600.
[9] LI Shikai, WEN Xiaotao, PU Yong, et al. Fracture prediction based on attenuative anisotropy theory and its application to a shale gas reservoir[J]. Journal of Geophysics and Engineering, 2023, 20(2): 196-210.
[10] ZHANG Hui, GUAN Da, XIANG Xuemei, et al. Prediction for fractured tight sandstone reservoir of Xu 4 member in eastern Yuanba area, northeastern Sichuan Basin[J]. Lithologic Reservoirs, 2018, 30(1): 133-139. 章惠, 关达, 向雪梅, 等. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏, 2018, 30(1): 133-139.
[11] WANG Wei, FAN Rui, LI Chengyin, et al. Exploration and prediction of promising fault-fracture reservoirs in the Xujiahe Formation, northeastern Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(4): 992-1001. 王威, 凡睿, 黎承银, 等. 川东北地区须家河组"断缝体"气藏有利勘探目标和预测技术[J]. 石油与天然气地质, 2021, 42 (4): 992-1001.
[12] YANG Jie, ZHANG Wenping, DING Chaolong, et al. Characteristics and main controlling factors of tight gas reservoirs in the second member of Triassic Xujiahe Formation, central Sichuan Basin[J]. Lithologic Reservoirs, 2025, 37(1): 137-148. 杨杰, 张文萍, 丁朝龙, 等. 川中地区三叠系须家河组二段致密气储层特征及主控因素[J]. 岩性油气藏, 2025, 37(1): 137-148.
[13] HUANG Yanqing, LIU Zhongqun, WANG Ai, et al. Types and distribution of tight sandstone gas sweet spots of the third member of Upper Triassic Xujiahe Formation in Yuanba area, Sichuan Basin[J]. Lithologic Reservoirs, 2023, 35(2): 21-30. 黄彦庆, 刘忠群, 王爱, 等. 四川盆地元坝地区上三叠统须家河组三段致密砂岩气甜点类型与分布[J]. 岩性油气藏, 2023, 35(2): 21-30.
[14] MA Delong, WANG Hongbin, ZHANG Xichen, et al. Analogue modeling of structural deformation of Tongnanba anticline in Mesozoic and Cenozoic, NE Sichuan Basin[J]. Earth Science, 2023, 48(4): 1307-1320. 马德龙, 王宏斌, 张希晨, 等. 川东北通南巴背斜中新生代构造变形的砂箱构造物理模拟[J]. 地球科学, 2023, 48(4): 1307-1320.
[15] ZHANG Rui, WEN Xiaotao, LI Shikai, et al. Application of frequency division ant-tracking in identifying deep minor fault[J]. Progress in Geophysics, 2017, 32(1): 350-356. 张瑞, 文晓涛, 李世凯, 等. 分频蚂蚁追踪在识别深层小断层中的应用[J]. 地球物理学进展, 2017, 32(1): 350-356.
[16] ZHOU Wen, YIN Taiju, ZHANG Yachun, et al. Application of ant tracking technology to fracture prediction: A case study from Xiagou Formation in Qingxi Oilfield[J]. Lithologic Reservoirs, 2015, 27(6): 111-118. 周文, 尹太举, 张亚春, 等. 蚂蚁追踪技术在裂缝预测中的应用: 以青西油田下沟组为例[J]. 岩性油气藏, 2015, 27(6): 111-118.
[17] CHEN Xuehua, HE Zhenhua, HUANG Deji, et al. Low frequency shadow detection of gas reservoirs in time-frequency domain[J]. Chinese Journal of Geophysics, 2009, 52(1): 215-221. 陈学华, 贺振华, 黄德济, 等. 时频域油气储层低频阴影检测[J]. 地球物理学报, 2009, 52(1): 215-221.
[18] ZHANG Yijiang, WEN Xiaotao, LIU Ting, et al. Seismic spectral imaging method based on deconvolutive generalized Stransform[J]. Science Technology and Engineering, 2017, 17 (15): 12-18. 张懿疆, 文晓涛, 刘婷, 等. 基于反褶积广义S变换的地震频谱成像方法研究[J]. 科学技术与工程, 2017, 17(15): 12-18.
[19] BAI T, TSVANKIN I. Time-domain finite-difference modeling for attenuative anisotropic media[J]. Geophysics, 2016, 81(2): 69-77.
[20] LI Shikai, PU Yong, MIAO Zhiwei, et al. Prestack fracture prediction based on attenuation anisotropy[J]. Geophysical Prospecting for Petroleum, 2025, 64(1): 163-173. 李世凯, 蒲勇, 缪志伟, 等. 基于衰减各向异性理论的叠前裂缝预测技术及应用[J]. 石油物探, 2025, 64(1): 163-173.
[21] XU Denghui, HAN Tongcheng, FU Liyun. Calculation method of dispersion and attenuation in the fractured rock with anisotropic background[J]. Chinese Journal of Geophysics, 2023, 66 (5): 2151-2166. 徐登辉, 韩同城, 符力耘. 背景为各向异性的含裂缝岩石频散和衰减计算方法研究[J]. 地球物理学报, 2023, 66(5): 2151-2166.
[22] CONNOLLY P. Elastic impedance[J]. The Leading Edge, 1999, 18(4): 438-452.
[23] TANG Shenglai. Geological modeling method and its application based on embedded multi-scale fracture model[J]. Special Oil & Gas Reservoirs, 2023, 30(1): 36-40. 唐圣来. 基于嵌入式多尺度裂缝模型的地质建模方法及应用[J]. 特种油气藏, 2023, 30(1): 36-40.
[24] ZHENG Hua, KANG Kai, LIU Weilin, et al. Main controlling factors and prediction of fractures in deep metamorphic buried hill reservoirs in Bohai Sea[J]. Lithologic Reservoirs, 2022, 34 (3): 29-38. 郑华, 康凯, 刘卫林, 等. 渤海深层变质岩潜山油藏裂缝主控因素及预测[J]. 岩性油气藏, 2022, 34(3): 29-38.
[25] YIN Xingyao, ZHANG Hongxue, ZONG Zhaoyun. Research status and progress of 5D seismic data interpretation in OVT domain[J]. Geophysical Prospecting for Petroleum, 2018, 57 (2): 155-178. 印兴耀, 张洪学, 宗兆云. OVT数据域五维地震资料解释技术研究现状与进展[J]. 石油物探, 2018, 57(2): 155-178.
[1] 江梦雅, 蒋中发, 刘龙松, 王江涛, 陈海龙, 王学勇, 刘海磊. 准噶尔盆地达巴松凸起三叠系白碱滩组油气地球化学特征及来源[J]. 岩性油气藏, 2025, 37(6): 71-87.
[2] 苏帅, 屈红军, 尹虎, 张磊岗, 杨晓锋. 致密砂岩储层孔喉结构分形特征及其对储层物性的影响——以鄂尔多斯盆地富县地区三叠系长8段为例[J]. 岩性油气藏, 2025, 37(6): 88-98.
[3] 肖文华, 杨军, 严宝年, 王建国, 李少勇, 马淇琳, 李宗霖, 薛欢召. 鄂尔多斯盆地环庆地区三叠系长8致密砂岩储层特征及成藏主控因素[J]. 岩性油气藏, 2025, 37(3): 23-32.
[4] 邓高山, 董雪梅, 余海涛, 张洁, 岳喜伟, 任军民, 姜涛. 准噶尔盆地沙湾凹陷三叠系百口泉组油气成藏条件及勘探潜力[J]. 岩性油气藏, 2025, 37(3): 59-72.
[5] 杨旭, 白鸣生, 龚汉渤, 李皋, 陶祖文. 川西新场地区三叠系须二段构造裂缝特征及定量预测[J]. 岩性油气藏, 2025, 37(3): 73-83.
[6] 张兆辉, 张皎生, 刘俊刚, 邹建栋, 张建伍, 廖建波, 李智勇, 赵雯雯. 鄂尔多斯盆地陇东地区三叠系长81亚段岩石相测井识别及勘探意义[J]. 岩性油气藏, 2025, 37(3): 95-107.
[7] 何小龙, 张兵, 徐川, 肖斌, 田云英, 李琢, 何一帆. 窄河道砂体中钙质夹层特征及其对储层质量的影响——以川西北梓潼地区侏罗系沙一段为例[J]. 岩性油气藏, 2025, 37(3): 129-139.
[8] 刘迎宝, 李元昊, 翟文彬, 赵文暄, 李哲, 杨龙华, 郭雅倩. 极缓坡湖盆浅水三角洲前缘砂体类型及成因模式——以鄂尔多斯盆地郝滩地区三叠系长81亚段为例[J]. 岩性油气藏, 2025, 37(3): 140-152.
[9] 李想, 付磊, 魏璞, 李俊飞, 徐港, 曹倩倩, 钟杨, 王振鹏. 沉积古地貌恢复及古地貌对沉积体系的控制作用——以准噶尔盆地石西地区三叠系百口泉组为例[J]. 岩性油气藏, 2025, 37(2): 38-48.
[10] 梁锋, 曹哲. 鄂尔多斯盆地华池地区三叠系长7页岩油储层特征、形成环境及富集模式[J]. 岩性油气藏, 2025, 37(1): 24-40.
[11] 杨杰, 张文萍, 丁朝龙, 石存英, 马云海. 川中地区三叠系须家河组二段致密气储层特征及主控因素[J]. 岩性油气藏, 2025, 37(1): 137-148.
[12] 卫欢, 单长安, 朱松柏, 黄钟新, 刘汉广, 朱兵, 吴长涛. 库车坳陷克深地区白垩系巴什基奇克组致密砂岩裂缝发育特征及地质意义[J]. 岩性油气藏, 2025, 37(1): 149-160.
[13] 吴佳, 赵卫卫, 刘钰晨, 李慧, 肖颖, 杨迪, 王嘉楠. 鄂尔多斯盆地延安地区三叠系长7页岩源储配置及油气富集规律[J]. 岩性油气藏, 2025, 37(1): 170-181.
[14] 赵军, 李勇, 文晓峰, 徐文远, 焦世祥. 基于斑马算法优化支持向量回归机模型预测页岩地层压力[J]. 岩性油气藏, 2024, 36(6): 12-22.
[15] 张晓丽, 王小娟, 张航, 陈沁, 关旭, 赵正望, 王昌勇, 谈曜杰. 川东北五宝场地区侏罗系沙溪庙组储层特征及主控因素[J]. 岩性油气藏, 2024, 36(5): 87-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!