岩性油气藏 ›› 2016, Vol. 28 ›› Issue (3): 48–57.doi: 10.3969/j.issn.1673-8926.2016.03.008

• 油气地质 • 上一篇    下一篇

四川盆地龙马溪组页岩储层孔隙结构的定量表征

龚小平1,2,唐洪明1,2,赵 峰1,2,王俊杰1,2,熊 浩1,2   

  1. 1. 油气藏地质及开发工程国家重点实验室 · 西南石油大学,成都 610500 ; 2. 西南石油大学 地球科学与技术学院,成都 610500
  • 出版日期:2016-05-20 发布日期:2016-05-20
  • 第一作者:龚小平( 1990- ),男,西南石油大学在读硕士研究生,研究方向为储层微观分析与油气层保护。 地址:( 610500 )四川省成都市新都区西南石油大学地球科学与技术学院。 E-mail : 836411812@qq.com
  • 通信作者: 唐洪明(1966-),男,博士,教授,博士生导师,主要从事储层微观分析与油气层保护等方面的教学工作。 E-mail:swpithm@vip.163.com。
  • 基金资助:

    国家自然科学基金重点项目“致密气藏储层干化、提高气体渗流能力的基础研究”(编号: 51534006 )和国家自然科学基金项目“基于产 能保护的致密砂岩气藏水基欠平衡钻井欠压值研究”(编号: 51304167 )联合资助

Quantitative characterization of pore structure in shale reservoir of Longmaxi Formation in Sichuan Basin

GongXiaoping 1,2, TangHongming 1,2, ZhaoFeng 1,2, WangJunjie 1,2, XiongHao 1,2   

  1. 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation , Southwest Petroleum University , Chengdu 610500 , China ; 2. School of Geoscience and Technology , Southwest Petroleum University , Chengdu 610500 , China
  • Online:2016-05-20 Published:2016-05-20

摘要:

页岩孔隙结构的定量表征可为页岩储层质量评价提供基础参数,但是利用常规方法很难准确表征页岩的微米—纳米级孔隙结构。 以四川盆地龙马溪组含气页岩为研究对象,综合对比常用的氮气( N 2 )吸附法、高压压汞法、核磁共振法等页岩测试手段的原理及优缺点,提出利用低压氮气吸附法测得的累计孔径分布来拟合页岩核磁 T 2 谱相对应的累计孔径分布,优化页岩核磁 T 2 谱与孔径的转换系数 C ,进而应磁共振测试结果来表征页岩中不同尺度的孔隙分布。 该方法可以弥补传统的低压氮气吸附与高压压汞联合表征方法的不足,因为高压压汞法测试可能会导致页岩破裂,产生大量微米级裂缝,这些微裂缝很难与天然微裂缝区分开。 此外,核磁共振具有对岩样加工简单、人工破坏性小、测试不需外来压力等优点,因此推荐低压氮气吸附法与核磁共振法联合表征页岩的孔隙结构方法,它能科学、准确地表征页岩的孔喉分布。 研究表明,龙马溪组页岩孔径分布曲线具有双峰或三峰特征,主要孔径为 0.2~100.0 nm ,介孔和微孔占优势,孔隙体积百分比分别为 67.75% 和 25.33% 。 最终明确了该区页岩储层孔隙结构的定量表征方法。

关键词: 页岩, 孔隙结构, 低压氮气吸附, 高压压汞, 核磁共振, 定量表征, 龙马溪组, 四川盆地

Abstract:

Quantitative characterization of pore structure in shale can indicate some basic parameters for shale reservoir quality evaluation. However, it is difficult to use conventional methods to accurately characterize the micron to nano-scale pore structure in shale. This paper took gas-bearing shale of Longmaxi Formation in Sichuan Basin as a study object to comprehensively compare the principles, advantages and disadvantages of the mostly used test approaches such as nitrogen adsorption, high-pressure mercury injection and nuclear magnetic resonance(NMR), etc. Nitrogen adsorption method is usually used to test the pore which is 1-50 nm in size, high-pressure mercury injection method is proposed to test for macropore (> 50 nm), and NMR can reflect the pore size distribution by testing the relaxation time (T2) spectrum of the saturated fluid in shale. The pore size in shale is positively related to the T2 value tested by NMR and there exists a conversion coefficient (C). A new method of combining NMR with low-pressure nitrogen adsorption for testing pore size distribution in shale was proposed, which optimizes the conversion coefficient (C) between pore size (D) tested by low-pressure nitrogen adsorption method and T2 value tested by NMR method firstly, and then the pore size distribution can be characterized by NMR based on the C value. Large amounts of micron-fractures could be caused in the process of high-pressure mercury injection, and these fractures are considered to be artificial fractures which is difficult to distinguish from natural micro-fractures, so the new method can make up for the deficiency of the conventional method for pore size distribution characterization by combining lowpressure nitrogen adsorption and high-pressure mercury injection. In addition, because of the advantages of simple sample processing, small artificial destruction, no external pressure, etc, it is recommended to characterize the pore structure by combining low-pressure nitrogen adsorption and NMR to reflect the pore throat distribution scientifically and accurately. The result shows that the pore size distribution in Longmaxi shale is bimodal or trimodal, and the main pore size is 0.2-100.0 nm. The mesopore and micropore are predominated, and their volume percents are 67.75% and 25.33% respectively. This method was used to quantitatively characterize the pore structure in shale in the study area, and the test result accords with the pore structure characteristics of Longmaxi shale.

Key words: shale , pore structure , low-pressure nitrogen adsorption , high-pressure mercury injection , nuclear magnetic resonance , quantitative characterization , Longmaxi Formation , Sichuan Basin

[1] 顾忠安,郑荣才,王亮,等.渝东涪陵地区大安寨段页岩储层特征研究[J].岩性油气藏,2014,26(2):67-73.

Gu Zhong’an,Zheng Rongcai,Wang Liang,et al. Characteristics of shale reservoir of Da’anzhai segment in Fuling area,eastern Chongqing[J]. Lithologic Reservoirs,2014,26(2):67-73.

[2] 张小龙,张同伟,李艳芳,等.页岩气勘探和开发进展综述[J].岩性油气藏,2013,25(2):116-122.

Zhang Xiaolong,Zhang Tongwei,Li Yanfang,et al. Research advance in exploration and development of shale gas[J]. Lithologic Reservoirs,2013,25(2):116-122.

[3] Loucks R G,Reed R M,Ruppel S C,et al. Morphology,genesis,and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J]. Journal of Sedimentary Research, 2009,79:848-861.

[4] Javadpour F,Fisher D,Unsworth M. Nanoscale gas flow in shale gas sediments[J]. Journal of Canadian Petroleum Technology,2007,46(10):55-61.

[5] 陈尚斌,朱炎铭,王红岩,等.川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J].煤炭学报,2012,37(3):438-444.

Chen Shangbin,Zhu Yanming,Wang Hongyan,et al. Structure characteristics and accumulation significance of nanopores in Longmaxi shalegas reservoir in thesouthern Sichuan Basin[J]. Journal of China Coal Society,2012,37(3):438-444.

[6] Loucks R G,Reed R M,Ruppel S C,et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrixrelated mudrock pores [J]. AAPG Bulletin,2012,96 (6):1071-1098.

[7] 田华,张水昌,柳少波,等.压汞法和气体吸附法研究富有机质页岩孔隙特征[J].石油学报,2012,33(3):419-427.

Tian Hua,Zhang Shuichang,Liu Shaobo,et al. Determination of organic-rich shale pore features by mercury injection and gas adsorption methods[J]. Acta Petrolei Sinica,2012,33(3):419-427.

[8] 郝乐伟,王琪,唐俊.储层岩石微观孔隙结构研究方法与理论综述[J].岩性油气藏,2013,25(5):123-128.

Hao Lewei,Wang Qi,Tang Jun. Research progress of reservoir microscopic pore structure[J]. Lithologic Reservoirs,2013,25(5):123-128.

[9]崔景伟,邹才能,朱如凯,等.页岩孔隙研究新进展[J].地球科学进展,2012,27(12):1319-1325.

Cui Jingwei,Zou Caineng,Zhu Rukai,et al. New advances in shale porosity research[J]. Advances in Earth Science,2012,27(12):1319-1325.

[10]Shi Yujiang,Yang Hua,Mao Zhiqiang,et al. Comparisons of pore structure for unconventional tight gas,coalbed methane and shale gas reservoirs[R]. SPE 165774,2013.

[11]Labani M M,Rezaee R,Saeedi A,et al. Evaluation of pore size spectrum of gas shale reservoirs using low pressure nitrogen adsorption,gas expansion and mercury porosimetry:A case study from the Perth and Canning Basins,Western Australia [J]. Journal of Petroleum Science & Engineering,2013,112(3):7-16.

[12]靳军,向宝力,杨召,等.实验分析技术在吉木萨尔凹陷致密储层研究中的应用[J].岩性油气藏,2015,27(3):18-25.

Jin Jun,Xiang Baoli,Yang Zhao,et al. Application of experimental analysis technology to research of tight reservoir in Jimsar Sag[J].Lithologic Reservoirs,2015,27(3):18-25.

[13]Chalmers G R,Bustin R M,Power I M. Characterization of gas shale pore systems by porosimetry,pycnometry,surface area,and field emission scanning electron microscopy/transmission electron microscopy image analyses:Examples from the Barnett,Woodford,Haynesville,Marcellus,and Doig units[J]. AAPG Bulletin,2012,96(6):1099-1119.

[14]白斌,朱如凯,吴松涛,等.利用多尺度 CT 成像表征致密砂岩微观孔喉结构[J].石油勘探与开发,2013,40(3):329-333.

Bai Bin,Zhu Rukai,Wu Songtao,et al. Multi-scale method of nano (micro)-CT study on microscopic pore structure of tight sandstone of Yanchang Formation,Ordos Basin[J]. Petroleum Exploration and Development,2013,40(3):329-333.

[15]黄金亮,邹才能,李建忠,等.川南志留系龙马溪组页岩气形成条件与有利区分析[J].煤炭学报,2012,37(5):782-787.

Huang Jinliang,Zou Caineng,Li Jianzhong,et al. Shale gas accumulation conditions and favorable zones of Silurian Longmaxi Formation in south Sichuan Basin,China[J]. Journal of China Coal Society,2012,37(5):782-787.

[16]曾祥亮,刘树根,黄文明,等.四川盆地志留系龙马溪组页岩与美国 Fort Worth 盆地石炭系 Barnett 组页岩地质特征对比[J].地质通报,2011,30(2/3):372-384.

Zeng Xiangliang,Liu Shugen,Huang Wenming,et al. Comparison of Silurian Longmaxi Formation shale of Sichuan Basin in China and Carboniferous Barnett Formation shale of Fort Worth Basin in United States [J]. Geological Bulletin of China,2011,30 (2/3):372-384.


[17]张金川,聂海宽,徐波,等.四川盆地页岩气成藏地质条件[J].天然气工业,2008,28(2):151-156.


Zhang Jinchuan,Nie Haikuan,Xu Bo,et al. Geological condition of shale gas accumulation in Sichuan Basin[J]. Natural Gas Industry,2008,28(2):151-156.

[18]蒋裕强,董大忠,漆麟,等.页岩气储层的基本特征及其评价[J].天然气工业,2010,30(10):7-12.

Jiang Yuqiang,Dong Dazhong,Qi Lin,et al. Basic features and evaluation of shale gas reservoirs[J]. Natural Gas Industry,2010,30(10):7-12.



[19]Adesida A G,Akkutlu I Y,Resasco D E,et al. Kerogen pore size distribution of Barnett shale using DFT analysis and Monte Carlo simulation[R]. SPE 147397,2011.

[20]谢晓永,唐洪明,王春华,等.氮气吸附法和压汞法在测试泥页岩孔径分布中的对比[J].天然气工业,2006,26(12):100-102.

Xie Xiaoyong,Tang Hongming,Wang Chunhua,et al. Contrast of nitrogen adsorption method and mercury porosimetry method in analysis of shale’s pore[J]. Natural Gas Industry,2006,26(12):100-102.

[21]徐祖新,郭少斌.基于 NMR 和 X-CT 的页岩储层孔隙结构研究[J].地球科学进展,2014,29(5):624-631.

Xu Zuxin,Guo Shaobin. Application of NMR and X-CT technology in the pore structure study of shale gas reservoirs[J]. Advances in Earth Science,2014,29(5):624-631.

[22]孙军昌,陈静平,杨正明,等.页岩储层岩芯核磁共振响应特征实验研究[J].科技导报,2012,30(14):25-29.

Sun Junchang,Chen Jingping,Yang Zhengming,et al. Experimental study of the NMR characteristics of shale reservoir rock

[J]. Science & Technology Review,2012,30(14):25-29.

[23]张烈辉,郭晶晶,唐洪明,等.四川盆地南部下志留统龙马溪组页岩孔隙结构特征[J].天然气工业,2015,35(3):22-29.

Zhang Liehui,Guo Jingjing,Tang Hongming,et al. Pore structure characteristics of Longmaxi shale in southern Sichuan Basin [J].Natural Gas Industry,2015,35(3):22-29.

[24]李海波,朱巨义,郭和坤.核磁共振T2 谱换算孔隙半径分布方法研究[J].波谱学杂志,2008,25(2):273-280.

Li Haibo,Zhu Juyi,Guo Hekun. Methods for calculating pore radius distribution in rock from NMR T2 spectra[J]. Chinese Journal of Magnetic Resonance,2008,25(2):273-280.

[25]Comisky J T,Santiago M,McCollom B,et al. Sample size effects on the application of mercury injection capillary pressure for determining the storage capacity of tight gas and oil shales[R]. CSUG/SPE149432,2011.

[26]周宇,魏国齐,郭和坤.核磁共振孔隙度影响因素分析与校准[J].测井技术,2011,35(3):210-214.

Zhou Yu,Wei Guoqi,Guo Hekun. Impact factors analysis and decision tree correction of NMR porosity measurements[J]. Well Logging Technology,2011,35(3):210-214.

[27]李晓峰,李庆峰,董丽欣.中基性火山岩顺磁物质对核磁共振孔隙度的影响分析[J].测井技术,2014,38(5):522-525.

Li Xiaofeng,Li Qingfeng,Dong Lixin. On impact of paramagnetic pubstances on nuclear magnetic porosity of intermediate to basic volcanic rocks[J]. Well Logging Technology,2014,38(5):522-525.
[1] 赵军, 李勇, 文晓峰, 徐文远, 焦世祥. 基于斑马算法优化支持向量回归机模型预测页岩地层压力[J]. 岩性油气藏, 2024, 36(6): 12-22.
[2] 白玉彬, 李梦瑶, 朱涛, 赵靖舟, 任海姣, 吴伟涛, 吴和源. 玛湖凹陷二叠系风城组烃源岩地球化学特征及页岩油“甜点”评价[J]. 岩性油气藏, 2024, 36(6): 110-121.
[3] 洪智宾, 吴嘉, 方朋, 余进洋, 伍正宇, 于佳琦. 纳米限域下页岩中可溶有机质的非均质性及页岩油赋存状态[J]. 岩性油气藏, 2024, 36(6): 160-168.
[4] 闫雪莹, 桑琴, 蒋裕强, 方锐, 周亚东, 刘雪, 李顺, 袁永亮. 四川盆地公山庙西地区侏罗系大安寨段致密油储层特征及高产主控因素[J]. 岩性油气藏, 2024, 36(6): 98-109.
[5] 王子昕, 柳广弟, 袁光杰, 杨恒林, 付利, 王元, 陈刚, 张恒. 鄂尔多斯盆地庆城地区三叠系长7段烃源岩特征及控藏作用[J]. 岩性油气藏, 2024, 36(5): 133-144.
[6] 邱玉超, 李亚丁, 文龙, 罗冰, 姚军, 许强, 文华国, 谭秀成. 川东地区寒武系洗象池组构造特征及成藏模式[J]. 岩性油气藏, 2024, 36(5): 122-132.
[7] 陈康, 戴隽成, 魏玮, 刘伟方, 闫媛媛, 郗诚, 吕龑, 杨广广. 致密砂岩AVO属性的贝叶斯岩相划分方法——以川中地区侏罗系沙溪庙组沙一段为例[J]. 岩性油气藏, 2024, 36(5): 111-121.
[8] 杨学锋, 赵圣贤, 刘勇, 刘绍军, 夏自强, 徐飞, 范存辉, 李雨桐. 四川盆地宁西地区奥陶系五峰组—志留系龙马溪组页岩气富集主控因素[J]. 岩性油气藏, 2024, 36(5): 99-110.
[9] 闫建平, 来思俣, 郭伟, 石学文, 廖茂杰, 唐洪明, 胡钦红, 黄毅. 页岩气井地质工程套管变形类型及影响因素研究进展[J]. 岩性油气藏, 2024, 36(5): 1-14.
[10] 孔令峰, 徐加放, 刘丁. 三塘湖盆地侏罗系西山窑组褐煤储层孔隙结构特征及脱水演化规律[J]. 岩性油气藏, 2024, 36(5): 15-24.
[11] 周刚, 杨岱林, 孙奕婷, 严威, 张亚, 文华国, 和源, 刘四兵. 四川盆地及周缘寒武系沧浪铺组沉积充填过程及油气地质意义[J]. 岩性油气藏, 2024, 36(5): 25-34.
[12] 张晓丽, 王小娟, 张航, 陈沁, 关旭, 赵正望, 王昌勇, 谈曜杰. 川东北五宝场地区侏罗系沙溪庙组储层特征及主控因素[J]. 岩性油气藏, 2024, 36(5): 87-98.
[13] 包汉勇, 赵帅, 张莉, 刘皓天. 川东红星地区中上二叠统页岩气勘探成果及方向展望[J]. 岩性油气藏, 2024, 36(4): 12-24.
[14] 申有义, 王凯峰, 唐书恒, 张松航, 郗兆栋, 杨晓东. 沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及“甜点”预测[J]. 岩性油气藏, 2024, 36(4): 98-108.
[15] 邹连松, 徐文礼, 梁西文, 刘皓天, 周坤, 霍飞, 周林, 文华国. 川东地区下侏罗统自流井组东岳庙段泥页岩沉积特征及物质来源[J]. 岩性油气藏, 2024, 36(4): 122-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . 2022年 34卷 2 期 封面[J]. 岩性油气藏, 2022, 34(2): 0 .
[2] 李在光, 李琳. 以井数据为基础的AutoCAD 自动编绘图方法[J]. 岩性油气藏, 2007, 19(2): 84 -89 .
[3] 程玉红, 郭彦如, 郑希民, 房乃珍, 马玉虎. 井震多因素综合确定的解释方法与应用效果[J]. 岩性油气藏, 2007, 19(2): 97 -101 .
[4] 刘俊田,靳振家,李在光,覃新平,郭 林,王 波,刘玉香. 小草湖地区岩性油气藏主控因素分析及油气勘探方向[J]. 岩性油气藏, 2007, 19(3): 44 -47 .
[5] 商昌亮,付守献. 黄土塬山地三维地震勘探应用实例[J]. 岩性油气藏, 2007, 19(3): 106 -110 .
[6] 王昌勇, 郑荣才, 王建国, 曹少芳, 肖明国. 准噶尔盆地西北缘八区下侏罗统八道湾组沉积特征及演化[J]. 岩性油气藏, 2008, 20(2): 37 -42 .
[7] 王克, 刘显阳, 赵卫卫, 宋江海, 时振峰, 向惠. 济阳坳陷阳信洼陷古近纪震积岩特征及其地质意义[J]. 岩性油气藏, 2008, 20(2): 54 -59 .
[8] 孙洪斌, 张凤莲. 辽河坳陷古近系构造-沉积演化特征[J]. 岩性油气藏, 2008, 20(2): 60 -65 .
[9] 李传亮. 地层抬升会导致异常高压吗?[J]. 岩性油气藏, 2008, 20(2): 124 -126 .
[10] 魏钦廉,郑荣才,肖玲,马国富,窦世杰,田宝忠. 阿尔及利亚438b 区块三叠系Serie Inferiere 段储层平面非均质性研究[J]. 岩性油气藏, 2009, 21(2): 24 -28 .