岩性油气藏 ›› 2013, Vol. 25 ›› Issue (1): 45–50.doi: 10.3969/j.issn.1673-8926.2013.01.010

• 油气地质 • 上一篇    下一篇

川中潼南地区须家河组二段高分辨率层序地层学研究

刘小亮1,2,王超勇2   

  1. 1.四川省煤炭设计研究院,四川成都310061; 2.中国矿业大学资源与地球科学学院,江苏徐州221008
  • 出版日期:2013-02-20 发布日期:2013-02-20
  • 第一作者:刘小亮(1984-),男,硕士,主要从事层序地层学方面的研究工作。 地址:(650051)云南省昆明市盘龙区东风东路 36 号建工大厦1508。 E-mail:liuxl479@163.com
  • 基金资助:

    国家重点基础研究发展计划“973”项目“中低丰度天然气藏大面积成藏机理与有效开发的基础研究”(编号:2007CB209504)资助

High resolution sequence stratigraphy of the second member of Xujiahe Formation in Tongnan area, central Sichuan Basin

LIU Xiaoliang 1,2, WANG Chaoyong2   

  1. 1. Coal Design and Research Institute in Sichuan Province, Chengdu 310061, China; 2. School of Resource and Earth Science, China University of Mining & Technology, Xuzhou 221008, China
  • Online:2013-02-20 Published:2013-02-20

摘要:

以沉积学和高分辨率层序地层学理论为指导,利用钻井、测井及露头剖面等资料,对川中潼南地区须家河组二段进行高分辨率层序地层学研究。 在识别不同级别层序界面和湖泛面类型的基础上,将须家河组二段划分为 2 个中期基准面旋回层序(MSC)、4 个短期基准面旋回层序(SSC)。 在短期基准面旋回层序中进一步识别出向上“变深”的非对称型(A 型)、向上“变深”复“变浅”的对称型(C 型)旋回层序 2 种结构类型。 以短期基准面旋回为时间单元,详细探讨了须家河组二段地质时期的古地理特征及演化,分析了主河道侧向迁移对沉积相展布的影响。

关键词: 热传导方程, 反射波, 散射波, 波场分离, 裂缝检测

Abstract:

Guided by the sedimentology and high resolution sequence stratigraphy theory, in combination with the data of outcrop profile, drilling core and well logging, this paper studied the high resolution sequence stratigraphy of the second member of Xujiahe Formation in the central Sichuan Basin. On the basis of recognition of different levels sequence interfaces and the types of lake flooding surface, Xujiahe Formation can be divided into two middle-term base level cyclical sequences (MSC) and four short-term base level cyclical sequences (SSC). Among the short-term base level cyclical sequences (SSC), we identified two cyclical structures, which are asymmetry form deepening upwards (A form) and symmetric form deepening upwards then getting shallow again(C form). Making the short-term base level cycle as the time unit, the ancient geographical characteristics and evolution of the second member of Xujiahe Formation were discussed in detail, and the influence of lateral migration of drainage line on the sedimentary facies was analyzed.

Key words: thermal conductivity equation, reflection wave, scattered wave, wave field separation, fracture detection

[1] 庞雄奇,陈冬霞,张俊.隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J].岩性油气藏,2007,19(1):1-8.
[2] 王道富,付金华,雷启鸿,等.鄂尔多斯盆地低渗透油气田勘探开发技术与展望[J].岩性油气藏,2007,19(3):126-130.
[3] 吕栋梁,唐海,吕渐江.气井产水时产能方程的确定[J].岩性油气藏,2010,22(4):112-114.
[4] Lea J F,Nickens H V,Wells M R. Gas well deliquification[M].The Second Edition. Elsevier:Gulf Professional Publishing,2008:13-30.
[5] Turner R G,Hubbard M,G,Dukler A,E. Analysis and prediction of minimum flow rate for the continuous removal of liquids from gas wells[J]. JPT,1969,21(9):1475-1481.
[6] Coleman S B,Clay H B,McCurdy D G,et al. A new look at predicting gas-well load up[J]. Journal of Petroleum Technology,1991,43(7):329-333.
[7] Nosseir M A,Darwich T A,Sayyouh M H,et al. A new approach for accurate prediction of loading in gas wells under different flowing conditions[J]. SPE Production and Facilities,2000,15(4):241-246.
[8] 李闽,郭平,刘武,等.气井连续携液模型比较研究[J].西南石油大学学报,2002,24(4):30-32.
[9] 王毅忠,刘庆文.计算气井最小携液临界流量的新方法[J].大庆石油地质与开发,2007,26(6):82-85.
[10] Zhou D,Yuan H. New model for gas well loading prediction [J].SPE 120580,2009.
[11] Wang Z B,Li Y C,Liu Z N,et al. A mechanistic study on minimum flow rate for the continuous removal of liquids from gas wells [J].Petroleum Science and Technology,2012,30(2):122-132.
[12] 李士伦.天然气工程[M].第2 版.北京:石油工业出版社,2008:112-113.
[13] Jain A K. Accurate explicit equation for friction factor[J]. Journal of the Hydraulics Division,1976,102(5):674-677.
[14] Brill J P,Mukherjee H. Multiphase flow in wells[M]. Texas:SPE Monograph Series,1999:113-116.
[15] 刘广峰,何顺利.不同气液比下气井携液临界产量的计算[J].科学技术与工程,2008,17(8):4797-4800.
[16] 李颖川.采油工程[M].第2 版.北京:石油工业出版社,2009:18-19.
[1] 陈可洋,陈树民,李来林,吴清岭,范兴才,刘振宽. 地震波动方程方向行波波场分离正演数值模拟与逆时成像[J]. 岩性油气藏, 2014, 26(4): 130-136.
[2] 陈可洋,吴沛熹,杨微. 扩散滤波方法在地震资料处理中的应用研究[J]. 岩性油气藏, 2014, 26(1): 117-122.
[3] 冯玉苹,刁瑞,徐维秀,杨晶,宋建国. 井间地震纵横波分离方法研究及应用[J]. 岩性油气藏, 2013, 25(5): 94-99.
[4] 陈可洋,杨微,吴清岭,范兴才,李来林,刘振宽. 地震反射波与散射波波场分离方法初探[J]. 岩性油气藏, 2013, 25(2): 76-81.
[5] 陈可洋. 高精度地震纯波震源数值模拟[J]. 岩性油气藏, 2012, 24(1): 84-91.
[6] 陈可洋. 井间弹性波波场散射特征数值模拟分析[J]. 岩性油气藏, 2011, 23(3): 91-96.
[7] 刘开元. 裂缝介质转换波方位各向异性研究[J]. 岩性油气藏, 2011, 23(1): 90-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[2] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[3] 林承焰, 谭丽娟, 于翠玲. 论油气分布的不均一性(Ⅰ)———非均质控油理论的由来[J]. 岩性油气藏, 2007, 19(2): 16 -21 .
[4] 王天琦, 王建功, 梁苏娟, 沙雪梅. 松辽盆地徐家围子地区葡萄花油层精细勘探[J]. 岩性油气藏, 2007, 19(2): 22 -27 .
[5] 王西文,石兰亭,雍学善,杨午阳. 地震波阻抗反演方法研究[J]. 岩性油气藏, 2007, 19(3): 80 -88 .
[6] 何宗斌,倪 静,伍 东,李 勇,刘丽琼,台怀忠. 根据双TE 测井确定含烃饱和度[J]. 岩性油气藏, 2007, 19(3): 89 -92 .
[7] 袁胜学,王 江. 吐哈盆地鄯勒地区浅层气层识别方法研究[J]. 岩性油气藏, 2007, 19(3): 111 -113 .
[8] 陈斐,魏登峰,余小雷,吴少波. 鄂尔多斯盆地盐定地区三叠系延长组长2 油层组沉积相研究[J]. 岩性油气藏, 2010, 22(1): 43 -47 .
[9] 徐云霞,王山山,杨帅. 利用沃尔什变换提高地震资料信噪比[J]. 岩性油气藏, 2009, 21(3): 98 -100 .
[10] 李建明,史玲玲,汪立群,吴光大. 柴西南地区昆北断阶带基岩油藏储层特征分析[J]. 岩性油气藏, 2011, 23(2): 20 -23 .