岩性油气藏 ›› 2017, Vol. 29 ›› Issue (1): 140–146.doi: 10.3969/j.issn.1673-8926.2017.01.019

• 石油工程 • 上一篇    下一篇

过量顶替液作业下压裂水平气井的产能模拟

严向阳1,2, 王腾飞1,2, 何双喜1,2, 申贝贝3, 徐永辉1, 陈林1,2   

  1. 1. 延安能源化工(集团)能新科油气技术工程有限公司, 陕西 延安 716000;
    2. 美国能新科国际有限公司, 北京 100022;
    3. 中国石化华北油田分公司 工程技术研究院, 郑州 450000
  • 收稿日期:2016-08-25 修回日期:2016-10-18 出版日期:2017-01-21 发布日期:2017-01-21
  • 第一作者:严向阳(1985-),男,硕士,工程师,主要从事于油气田增产理论与改造技术方面的工作。地址:(716000)陕西省延安市宝塔区东大街东盛大厦702室。Email:xycy911@163.com。
  • 基金资助:
    中国石化华北油田分公司研究项目“东胜气田压裂及排液工艺优化研究”(编号:2014-QTKF-47)资助

Productivity simulation for fracturing horizontal gas wells considering overdisplacing operation

YAN Xiangyang1,2, WANG Tengfei1,2, HE Shuangxi1,2, SHEN Beibei3, XU Yonghui1, CHEN Lin1,2   

  1. 1. Yan'an Energy Services, Yan'an 716000, Shaanxi, China;
    2. Energy New Technologies International Corporation, Beijing 100022, China;
    3. Research Institute of Engineering and Technology, NorthChina Branch Company, Sinopec, Zhengzhou 450000, China
  • Received:2016-08-25 Revised:2016-10-18 Online:2017-01-21 Published:2017-01-21

摘要: 为了研究过量顶替液(过顶替)对压裂水平气井压后产能的影响,根据过顶替后裂缝缝口的特征,结合Harrington 滤失计算公式,建立了过顶替影响区域的计算模型;根据水力裂缝闭合后的特征,结合Carman-Kozeny 和Walsh 关于在裂缝粗糙表面作层流流动下的裂缝导流能力模型公式,建立了过顶替影响区域无填砂水力裂缝导流能力的计算模型;根据不稳定渗流模型,结合点源理论及势叠加原理,建立了压裂水平气井压后产能模拟模型。综合上述3 个模型建立了过顶替作业下压裂水平气井的产能模拟模型,并进行了实例计算和单因素分析。结果表明:储层岩石颗粒粒径越大、过顶替影响区域裂缝导流能力越强、过顶替液量越小,对产能的影响就越小;过顶替影响区域内裂缝的导流能力对压裂水平气井的压后产量至关重要;过顶替一旦形成,则产量下降程度随着过顶替液量的增加而降低。本次研究所建立的模型为过顶替作业下压裂水平气井的产能影响因素研究提供了思路,对水平井压裂设计优化具有一定的指导作用。

Abstract: Overdisplacing operation often occurs in fracturing treatment in order to meet the safety requirements of tools or treatments, especially in multi-stage fracturing horizontal wells with drillable bridging plug. However, overdisplacing may affect post- frac production due to decreasing fracture conductivity, hardly any models for studying this effect. The calculation model of overdisplacing sweep region was established based on the fractureseam features and Harrington formula; the conductivity model of unpropped hydraulic fracture was established according to the fracture closure, Carman-Kozeny formula and Walsh model; moreover, the point source theory, the unstable gas seepage formula and the potential superposition theory were adopted to establish the productivity calculation model of fracturing horizontal gas wells. From the above models, a new simulation model was built to predicting the production of fractured horizontal gas wells considering overdisplacing, and a calculation example and single factor analysis were performed. The calculation results show that the larger the rock grain sizes, the higher the fracture conductivity and the smaller the overdisplacing liquid volume, the lower the production reduction. The fracture conductivity of overdisplacing sweep region plays an important role in productivity performance. Overdisplacing, once formed, will have a great effect on the productivity, however, the productivity of horizontal gas wells gradually goes down with overdisplacing volume increment, and downward margin decreases too. Thus, the models proposed could not only provide basis for a research idea for productivity of fracturing horizontal gas wells considering overdisplacing operation, but also supply guidance for the optimization design of a multi-stage fracturing horizontal wells.

中图分类号: 

  • TE328
[1] 吴奇,胥云,张守良,等. 非常规油气藏体积改造技术核心理 论与优化设计关键.石油学报,2014,35(4):706-714. WU Q,XU Y,ZHANG S L,et al. The core theories and key optimization designs of volume stimulation technology for unconventional reservoirs. Acta Petrolei Sinica,2014,35(4):706-714.
[2] 张小龙,张同伟,李艳芳,等. 页岩气勘探和开发进展综述. 岩 性油气藏,2013,25(2):116-122. ZHANG X L,ZHANG T W,LI Y F,et al. Research advance in exploitation and development of shale gas. Lithologic Reservoirs, 2013,25(2):116-122.
[3] 严向阳,胡永全,李楠,等. 泥页岩地层破裂压力计算模型研 究.岩性油气藏,2015,27(2):109-114. YAN X Y,HU Y Q,LI N,et al. Calculation model of breakdown pressure in shale formation. Lithologic Reservoirs,2015, 27(2):109-114.
[4] 王大为,李晓平. 页岩气勘探和开发进展综述. 岩性油气藏, 2011,23(2):118-123. WANG D W,LI X P. Advances in deliverability analysis of horizontal well. Lithologic Reservoirs,2011,23(2):118-123.
[5] 叶登胜,李斌,周正,等. 新型速钻复合桥塞的开发与应用. 天 然气工业,2014,34(4):62-66. YE D S,LI B,ZHOU Z,et al. Development and application of a new fast-drilling composite plug. Natural Gas Industry,2014, 34(4):62-66.
[6] 任勇,叶登胜,李剑秋,等. 易钻桥塞射孔联作技术在水平井 分段压裂中的实践.石油钻采工艺,2013,35(2):90-93. REN Y,YE D S,LI J Q,et al. Application of drillable bridge plug and clustering perforation in staged fracturing for horizontal well. Oil Drilling & Production Technology,2013,35(2): 90-93.
[7] 赵金洲,陈曦宇,刘长宇,等. 水平井分段多簇压裂缝间干扰 影响分析.天然气地球科学,2015,26(3):533-538. ZHAO J Z,CHEN X Y,LIU C Y,et al. The analysis of crack interaction in multi- stage horizontal fracturing. Natural Gas Geoscience,2015,26(3):533-538.
[8] 吴奇,胥云,王晓泉,等. 非常规油气藏体积改造技术—内涵、 优化设计与实现. 石油勘探与开发,2012,39(3):352-358. WU Q,XU Y,WANG X Q,et al.Volume fracturing technology of unconventional reservoirs: Connotation,optimization design and implementation. Petroleum Exploration & Development, 2012,39(3):352-358.
[9] 严向阳,王腾飞,徐永辉,等. 连续管坐塞与分簇射孔联作技 术.石油机械,2015,43(5):107-110. YAN X Y,WANG T F,XU Y H,et al. Joint operation of coil tubing plugging and cluster perforation. China Petroleum Machinery, 2015,43(5):107-110.
[10] 徐严波,齐桃,杨凤波,等. 压裂后水平井产能预测新模型. 石 油学报,2006,27(1):89-91. XU Y B,QI T,YANG F B,et al. New model for productivity test of horizontal well after hydraulic fracturing. Acta Petrolei Sinica,2006,27(1):89-91.
[11] 胡永全,严向阳,赵金洲. 多段压裂水平气井紊流产能模拟模 型—以塔里木盆地克拉苏气田大北区块为例. 天然气工业, 2013,33(1):1-4. HU Y Q,YAN X Y,ZHAO J Z. A simulation model for the turbulent production of a multi- stage fractured gas well:a case study from the Dabei block in the Kelasu Gas Field,Tarim Basin. Natural Gas Industry,2013,33(1):1-4.
[12] 蒋海,杨兆中,李小刚,等. 裂缝面滤失对压裂井产能的影响 分析. 长江大学学报(自然科学版),2008,5(1):87-89. JIANG H,YANG Z Z,LI X G,et al. Analyses on the effect fracture surface leak-off on fractured well productivity. Journal of Yangtze University(Natural Science Edition),2008,5(1):87-89.
[13] 吴国涛,胥云,杨振周,等. 考虑支撑剂及其嵌入程度对支撑 裂缝导流能力影响的数值模拟. 天然气工业,2013,31(5): 65-68. WU G T,XU Y,YANG Z Z,et al. Numerical simulation considering the impact of proppant and its embedment degree on fracture flow conductivity. Natural Gas Industry,2013,31(5): 65-68.
[14] 何更生.油层物理.北京:石油工业出版社,1994. HE G S. Rreservoir physics. Beijing:Ptroleum Industry Press, 1994.
[15] WALSH J B. Effect of pore pressure and confining pressure on fracture permeability. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1981,18(5): 429-435.
[16] 李颖川.采油工程.北京:石油工业出版社,2002. LI Y C. Oil production engineering. Beijing:Ptroleum Industry Press,2002.
[17] COOKE C E. Conductivity of fractureproppants in multiple layers. SPE 4117,1973.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[2] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[3] 林承焰, 谭丽娟, 于翠玲. 论油气分布的不均一性(Ⅰ)———非均质控油理论的由来[J]. 岩性油气藏, 2007, 19(2): 16 -21 .
[4] 王天琦, 王建功, 梁苏娟, 沙雪梅. 松辽盆地徐家围子地区葡萄花油层精细勘探[J]. 岩性油气藏, 2007, 19(2): 22 -27 .
[5] 王西文,石兰亭,雍学善,杨午阳. 地震波阻抗反演方法研究[J]. 岩性油气藏, 2007, 19(3): 80 -88 .
[6] 何宗斌,倪 静,伍 东,李 勇,刘丽琼,台怀忠. 根据双TE 测井确定含烃饱和度[J]. 岩性油气藏, 2007, 19(3): 89 -92 .
[7] 袁胜学,王 江. 吐哈盆地鄯勒地区浅层气层识别方法研究[J]. 岩性油气藏, 2007, 19(3): 111 -113 .
[8] 陈斐,魏登峰,余小雷,吴少波. 鄂尔多斯盆地盐定地区三叠系延长组长2 油层组沉积相研究[J]. 岩性油气藏, 2010, 22(1): 43 -47 .
[9] 徐云霞,王山山,杨帅. 利用沃尔什变换提高地震资料信噪比[J]. 岩性油气藏, 2009, 21(3): 98 -100 .
[10] 李建明,史玲玲,汪立群,吴光大. 柴西南地区昆北断阶带基岩油藏储层特征分析[J]. 岩性油气藏, 2011, 23(2): 20 -23 .