岩性油气藏 ›› 2017, Vol. 29 ›› Issue (5): 140–147.doi: 10.3969/j.issn.1673-8926.2017.05.017

• 油气田开发 • 上一篇    下一篇

黔北小林华矿区高阶煤层气藏特征及开采技术

高为1,2, 金军1, 易同生1, 赵凌云1,2, 张曼婷1, 郑德志3   

  1. 1. 贵州省煤层气页岩气工程技术研究中心, 贵阳 550081;
    2. 贵州省煤田地质局159队, 贵州 六盘水 561600;
    3. 煤炭科学研究总院, 北京 100013
  • 收稿日期:2017-02-23 修回日期:2017-04-30 出版日期:2017-09-21 发布日期:2017-09-21
  • 第一作者:高为(1987-),男,硕士,工程师,主要从事煤层气及页岩气开发地质方面的研究工作。地址:(550081)贵州省贵阳市观山湖区阳关大道112号煤田科技中心。Email:404929883@qq.com。
  • 通信作者: 金军(1983-),男,硕士,高级工程师,主要从事煤层气地质方面的研究工作。Email:99761164@qq.com。
  • 基金资助:
    贵州省地质勘查基金项目“黔北综合试验区金沙地区煤系地层‘三气'综合评价及共探共采选区研究”(编号:2016-03)与中国地质调查局项目“黔北二叠系煤系地层‘三气’资源勘查评价试验”(编号:12120114020201-05)联合资助

Enrichment mechanism and mining technology of high rank coalbed methane in Xiaolinhua coal mine, northern Guizhou

GAOWei1,2, JIN Jun1, YI Tongsheng1, ZHAO Lingyun1,2, ZHANG Manting1, ZHENG Dezhi3   

  1. 1. Guizhou Engineering Technology Research Center for Coalbed Methane and Shale Gas, Guiyang 550081, China;
    2. NO.159 Team of Guizhou Coal Geological Bureau, Liupanshui 561600, Guizhou, China;
    3. China Coal Research Institute, Beijing 100013, China
  • Received:2017-02-23 Revised:2017-04-30 Online:2017-09-21 Published:2017-09-21

摘要: 为了揭示黔北小林华矿区煤层气成藏特征,从构造、水文地质、含煤性、储集性、封盖条件等方面,分析了该矿区煤层气赋存的基本地质条件,并研究了主力煤层的储层特征。结果表明:煤层气资源主要赋存于上二叠统龙潭组上、下2个煤组的5层主要煤层中,煤层单层厚度较薄,累计厚度较大,煤阶为3号无烟煤,煤岩原生结构较完整;煤储层埋深适中、含气量高、吸附性强,储层压力梯度平均为0.87MPa/100m,孔隙连通性较好,孔隙度平均为2.95%,渗透率平均为0.03mD,并提出了目标煤层、钻井工艺、压裂改造、合层排采等方面的建议。该矿区高阶煤层气保存条件优越,且下煤组煤层总体优于上煤组煤层,适宜进行煤层气地面开发。

关键词: 生屑滩相储层, "平剖融合"微相分析, 相控反演, 相控孔隙度预测

Abstract: To reveal the coalbed methane reservoir characteristics of Xiaolinhua coal mine in northern Guizhou, the basic geological conditions of structure,hydrogeology,coal-bearing property,reservoir and sealed condition were analyzed. The results show that the coalbed methane resources mainly occurred in the upper and lower coal measures,containing five layers coal,of which the cumulative thickness is large,the coal rank is No. 3 anthracite coal,and the original structure of coalbed is more complete. The coal reservoir is characterized by suitable burial depth,high gas content,strong adsorption and good pore connectivity,and the average coal reservoir pressure gradient is 0.87 MPa/100 m,average porosity is 2.95%,average permeability is 0.03 mD. The valuable suggestions are proposed for coalbed methane mining in target coal seam optimization,drilling technology, fracture technology and combined seam gas drainage technology. It is beneficial for coalbed methane ground development that the preservation conditions of high rank coalbed methane are advantage and the lower coal measures are better than the upper coal measures.

Key words: bioclastic shoal reservoir, microfacies analysis, facies-controlled inversion, facies-controlled porosity prediction

中图分类号: 

  • P618.11
[1] 伊伟,熊先钺,王伟,等. 鄂尔多斯盆地合阳地区煤层气赋存特征研究.岩性油气藏,2015,27(2):38-45. YI W,XIONG X Y,WANG W,et al. Study on occurrence features of coalbed methane in Heyang area,Ordos Basin. Lithologic Reservoirs,2015,27(2):38-45.
[2] 吴雅琴,邵国良,徐耀辉,等. 煤层气开发地质单元划分及开发方式优化——以沁水盆地郑庄区块为例. 岩性油气藏, 2016,28(6):125-133. WU Y Q,SHAO G L,XU Y H,et al. Geological unit division and development model optimization of coalbed methane:a case study from Zhengzhuang block in Qinshui Basin. Lithologic Reservoirs,2016,28(6):125-133.
[3] 叶建平,陆小霞. 我国煤层气产业发展现状和技术进展. 煤炭科学技术,2016,44(1):24-28. YE J P,LU X X. Development status and technical progress of China coalbed methane industry. Coal Science and Technology, 2016,44(1):24-28.
[4] 邵龙义,侯海海,唐跃,等. 中国煤层气勘探开发战略接替区优选. 天然气工业,2015,35(3):1-11. SHAO L Y,HOU H H,TANG Y,et al. Selection of strategic replay areas of CBM exploration and development in China. Natural Gas Industry,2015,35(3):1-11.
[5] 高为,金军,易同生,等. 黔西月亮田矿区YV-1井煤储层孔隙特征研究.煤炭工程,2016,48(9):109-112. GAO W,JIN J,YI T S,et al. Research on pore characteristics of coal reservoirs in YV-1 well of Yueliangtian mining area in Western Guizhou. Coal Engineering,2016,48(9):109-112.
[6] 徐宏杰,桑树勋,杨景芬,等. 贵州省煤层气勘探开发现状与展望. 煤炭科学技术,2016,44(2):1-7. XU H J,SANG S X,YANG J F,et al. Status and expectation on coalbed methane exploration and development in Guizhou Province. Coal Science and Technology,2016,44(2):1-7.
[7] 张廷山,张志诚,伍坤宇. 滇黔北地区地层压实恢复及沉积速率反演. 岩性油气藏,2016,28(5):99-106. ZHANG T S,ZHANG Z C,WU K Y. Restoration of formation compaction and inversion of deposition rate in Dianqianbei exploration area. Lithologic Reservoirs,2016,28(5):99-106.
[8] 覃军,张介辉,徐克定,等. 中国大陆南方煤层气勘探前景评价.新疆石油地质,2006,27(1):118-120. QIN J,ZHANG J H,XU K D,et al. The prospective evaluation for exploration of coalbed gas in south China. Xinjiang Petroleum Geology,2006,27(1):118-120.
[9] 程伟,杨瑞东,崔玉朝,等. 贵州毕节地区晚二叠世煤质特征及其成煤环境意义.地质学报,2013,87(11):1763-1777. CHENG W,YANG R D,CUI Y C,et al. Characteristic of Late Permian coal quality from Bijie,Guizhou province,SW China, and its significance for paleoenvironment.Acta Geologica Sinica, 2013,87(11):1763-1777.
[10] 刘大锰,李俊乾. 我国煤层气分布赋存主控地质因素与富集模式. 煤炭科学技术,2014,42(6):19-24. LIU D M,LI J Q. Main geological controls on distribution and occurrence and enrichment patterns of coalbed methane in China. Coal Science and Technology,2014,42(6):19-24.
[11] 高为,易同生,金军,等. 贵州松河井田煤层气地面抽采潜力分析. 煤矿安全,2016,47(8):190-193. GAO W,YI T S,JIN J,et al. Potential analysis of coalbed methane drainage in Guizhou Songhe coal mine. Safety in Coal Mines,2016,47(8):190-193.
[12] 窦新钊,姜波,秦勇,等. 黔西地区晚二叠世煤层变质规律及机理研究.煤炭学报,2012,37(3):424-429. DOU X Z,JIANG B,QIN Y,et al. Pattern and mechanism of metamorphism of Late Permian coal in western Guizhou. Journal of China Coal Society,2012,37(3):424-429.
[13] 徐宏杰,桑树勋,易同生,等. 黔西地区煤层埋深与地应力对其渗透性控制机制. 地球科学——中国地质大学学报,2014, 39(11):1507-1516. XU H J,SANG S X,YI T S,et al. Control mechanism of buried depth and in-situ stress for coal reservoir permeability in western Guizhou. Earth Science-Journal of China University of Geosciences, 2014,39(11):1507-1516.
[14] 康园园,邵先杰,石磊,等. 煤层气开发目标区精选体系与方法研究. 岩性油气藏,2011,23(1):62-66. KANG Y Y,SHAO X J,SHI L,et al. Study on system and method of ranking coaled methane development perspectives. Lithologic Reservoirs,2011,23(1):62-66.
[15] 冀敏俊. 潞安矿区高河井田煤层气地面抽采有利区段评价. 煤田地质与勘探,2012,40(3):36-39. JI M J. Evaluation of favorable blocks for surface drainage of CBM in Gaohe coal mine,Lu'an coalfield. Coal Geology & Exploration,2012,40(3):36-39.
[16] 赵丽娟,秦勇,林玉成. 煤层含气量与埋深关系异常及其地质控制因素.煤炭学报,2010,35(7):1165-1169. ZHAO L J,QIN Y,LIN Y C. Abnormal relation and its geological controls of coalbed methane content to buried depth of coal seams. Journal of China Coal Society,2010,35(7):1165-1169.
[17] 赵贤正,杨延辉,孙粉锦,等. 沁水盆地南部高阶煤层气成藏规律与勘探开发技术.石油勘探与开发,2016,43(2):303-309. ZHAO X Z,YANG Y H,SUN F J,et al. Enrichment mechanism and exploration and development technologies of high rank coalbed methane in south Qinshui Basin,Shanxi province. Petroleum Exploration and Development,2016,43(2):303-309.
[18] 李传亮,彭朝阳,朱苏阳. 煤层气其实是吸附气. 岩性油气藏, 2013,25(2):112-115. LI C L,PENG Z Y,ZHU S Y. Coalbed methane is adsorption gas underground. Lithologic Reservoirs,2013,25(2):112-115.
[19] 孟召平,蓝强,刘翠丽,等. 鄂尔多斯盆地东南缘地应力、储层压力及其耦合关系.煤炭学报,2013,38(1):122-128. MENG Z P,LAN Q,LIU C L,et al. In-situ stress and coal reservoir pressure in southeast margin of Ordos Basin and their coupling relations. Journal of China Coal Society,2013,38(1):122-128.
[20] 高为,易同生. 黔西松河井田煤储层孔隙特征及对渗透性的影响. 煤炭科学技术,2016,44(2):55-61. GAO W,YI T S. Pore features of coal reservoir in Songhe Mine Field of west Guizhou and its impact to permeability. Coal Science and Technology,2016,44(2):55-61.
[21] 易同生,周效志,金军. 黔西松河井田龙潭煤系煤层气-致密气成藏特征及共探共采技术.煤炭学报,2016,41(1):212-220. YI T S,ZHOU X Z,JIN J. Reservoir forming characteristics and co-exploration and concurrent production technology of Longtan coal measure coalbed methane & tight gas in Songhe field, western Guizhou. Journal of China Coal Society,2016,41(1):212-220.
[22] 高为,田维江,秦文,等. 贵州省煤层气与页岩气共探共采的地质优选.断块油气田,2014,21(1):36-38. GAO W,TIAN W J,QIN W,et al. Geological optimization of coalbed methane and shale gas co-exploration and concurrent production in Guizhou Province. Fault-Block Oil & Gas Field, 2014,21(1):36-38.
[23] 刘钰辉,李建武,张培河,等. 芦岭井田煤层气开发地质条件及开发方式选择. 煤田地质与勘探,2013,41(2):25-28. LIU Y H,LI J W,ZHANG P H,et al. The selection of suitable development method and geological conditions of CBM development in Luling coal district. Coal Geology & Exploration, 2013,41(2):25-28.
[24] 倪小明,贾炳,王延斌. 合层水力压裂煤层投球数的确定. 天然气工业,2012,32(7):33-37. NI X M,JIA B,WANG Y B. Determination of ball sealers used for the multi-layer hydraulic fracturing in coal seams. Natural Gas Industry,2012,32(7):33-37.
[25] 张政,秦勇,傅雪海. 沁南煤层气合层排采有利开发地质条件.中国矿业大学学报,2014,43(6):1019-1024. ZHANG Z,QIN Y,FU X H. The favorable developing geological conditions for CBM multi-layer drainage in southern Qinshui Basin. Journal of China University of Mining&Technology, 2014,43(6):1019-1024.
[26] 傅雪海,葛燕燕,梁文庆,等. 多层叠置含煤层气系统递进排采的压力控制及流体效应. 天然气工业,2013,33(11):35-39. FU X H,GE Y Y,LIANG W Q,et al. Pressure control and fluid effect of progressive drainage of multiple superposed CBM systems. Natural Gas Industry,2013,33(11):35-39.
[27] 彭兴平,谢先平,刘晓,等. 贵州织金区块多煤层合采煤层气排采制度研究.煤炭科学技术,2016,44(2):39-44. PENG X P,XIE X P,LIU X,et al. Study on combined coalbed methane drainage system of multi seams in Zhijin block,Guizhou. Coal Science and Technology,2016,44(2):39-44.
[1] 李金磊, 陈祖庆, 王良军, 刘力辉, 李建海. 相控技术在低勘探区生屑滩相储层预测中的应用[J]. 岩性油气藏, 2017, 29(3): 110-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[2] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[3] 林承焰, 谭丽娟, 于翠玲. 论油气分布的不均一性(Ⅰ)———非均质控油理论的由来[J]. 岩性油气藏, 2007, 19(2): 16 -21 .
[4] 王天琦, 王建功, 梁苏娟, 沙雪梅. 松辽盆地徐家围子地区葡萄花油层精细勘探[J]. 岩性油气藏, 2007, 19(2): 22 -27 .
[5] 王西文,石兰亭,雍学善,杨午阳. 地震波阻抗反演方法研究[J]. 岩性油气藏, 2007, 19(3): 80 -88 .
[6] 何宗斌,倪 静,伍 东,李 勇,刘丽琼,台怀忠. 根据双TE 测井确定含烃饱和度[J]. 岩性油气藏, 2007, 19(3): 89 -92 .
[7] 袁胜学,王 江. 吐哈盆地鄯勒地区浅层气层识别方法研究[J]. 岩性油气藏, 2007, 19(3): 111 -113 .
[8] 陈斐,魏登峰,余小雷,吴少波. 鄂尔多斯盆地盐定地区三叠系延长组长2 油层组沉积相研究[J]. 岩性油气藏, 2010, 22(1): 43 -47 .
[9] 徐云霞,王山山,杨帅. 利用沃尔什变换提高地震资料信噪比[J]. 岩性油气藏, 2009, 21(3): 98 -100 .
[10] 李建明,史玲玲,汪立群,吴光大. 柴西南地区昆北断阶带基岩油藏储层特征分析[J]. 岩性油气藏, 2011, 23(2): 20 -23 .