岩性油气藏 ›› 2024, Vol. 36 ›› Issue (1): 14–22.doi: 10.12108/yxyqc.20240102

• 地质勘探 • 上一篇    下一篇

四川盆地涪陵南地区奥陶系五峰组—志留系龙马溪组页岩古构造应力场及裂缝特征

包汉勇1, 刘超1, 甘玉青1, 薛萌2, 刘世强2, 曾联波2,3, 马诗杰2, 罗良2   

  1. 1. 中国石化江汉油田分公司 勘探开发研究院, 武汉 430223;
    2. 中国石油大学 (北京)地球科学学院, 北京 102249;
    3. 北京大学 能源研究院, 北京 100871
  • 收稿日期:2023-07-25 修回日期:2023-09-01 出版日期:2024-01-01 发布日期:2024-01-02
  • 第一作者:包汉勇(1981-),男,博士,研究员,主要从事油气勘探开发综合研究工作。地址:(430223)湖北省武汉市东湖高新区大学园路18号勘探开发研究院。Email:baohy.jhyt@sinopec.com。
  • 基金资助:
    中国石油化工股份有限公司科技项目“白马地区常压页岩气富集高产机理与目标评价”(编号:P21087-1)资助。

Paleotectonic stress field and fracture characteristics of shales of Ordovician Wufeng Formation to Silurian Longmaxi Formation in southern Fuling area,Sichuan Basin

BAO Hanyong1, LIU Chao1, GAN Yuqing1, XUE Meng2, LIU Shiqiang2, ZENG Lianbo2,3, MA Shijie2, LUO Liang2   

  1. 1. Research Institute of Exploration and Development, Jianghan Oilfield Company, Sinopec, Wuhan 430223, China;
    2. School of Earth Sciences, China University of Petroleum(Beijing), Beijing 102249, China;
    3. Institute of Energy, Peking University, Beijing 100871, China
  • Received:2023-07-25 Revised:2023-09-01 Online:2024-01-01 Published:2024-01-02

摘要: 通过岩石力学实验、声发射实验和地震资料综合解释,利用有限元数值模拟方法,对涪陵南地区奥陶系五峰组—志留系龙马溪组海相页岩古构造应力场进行了数值模拟,并结合岩心实测结果,预测了构造裂缝的发育特征。研究结果表明: ①涪陵南地区裂缝主要形成期(燕山晚期)构造应力和裂缝的分布受断层、岩石力学性质和构造应力的影响,断层广泛发育的区域容易出现应力集中,并引起较大的应力梯度。②利用库伦-莫尔破裂准则预测了研究区构造裂缝的发育,同时引入剪切破裂指数R定量表征裂缝发育的强度,其值越大反映裂缝发育程度越高。窄陡断背斜和断层附近裂缝发育,以高角度剪切裂缝为主,而在宽缓向斜部位裂缝发育程度最弱,研究区五峰组—龙马溪组底部硅质页岩应力集中,裂缝最发育。③涪陵南地区海相页岩气保存有利区主要为3个区带:远离大断层的凤来向斜内部,主要构造变形期未遭受大的破坏作用,其位于应力低值区,具有良好的保存条件,为Ⅰ类有利区;白马向斜内部小断层发育,应力值位于中等水平,保存条件中等,为Ⅱ类较有利区;石门—金坪断背斜遭受到强烈改造作用,容易产生大规模剪切裂缝,破坏了保存条件,为Ⅲ类不利区。

关键词: 薄板模型, 岩石力学参数, 有限元数值模拟, 构造应力场, 剪切裂缝, 库伦-莫尔破裂准则, 破裂指数, 海相页岩, 五峰组-龙马溪组, 涪陵南地区, 四川盆地

Abstract: Through rock mechanics experiment, acoustic emission experiment, comprehensive interpretation of seismic data, the finite element numerical simulation method was used to numerically simulate the paleotectonic stress field of marine shales of Ordovician Wufeng Formation to Silurian Longmaxi Formation in southern Fuling area. Combined with the measured results of cores, the development characteristics of structural fractures were predicted. The results show that:(1) The distribution of tectonic stress and fractures in southern Fuling area during the main formation period of fractures(the Late Yanshanian) was influenced by faults, rock mechanical properties, and tectonic stress. In areas where faults are widely developed, stress concentration can easily occur and cause large stress gradients.(2) Coulomb-Moore fracture criterion was used to predict the development of structural fractures in the study area, and the shear fracture index R was introduced to quantitatively characterize the strength of fracture development. The larger the value, the higher the degree of fracture development. Narrow and steep fault anticlines and fractures are developed near faults, mainly with high angle shear fractures, while the development of fractures is weakest in the wide and gentle synclines. The stress in the siliceous shales at the bottom of the Wufeng Formation Longmaxi Formation in the study area is concentrated, and the fractures are the most developed.(3) There are three favorable zones for the preservation of marine shale gas in the southern Fuling area:The Fenglai syncline, which is far away from the major faults and has not suffered significant damage during the main structural deformation period, is located in the low stress area with good preservation conditions, and is classified as class Ⅰ favorable zone;The Baima syncline, with small faults developed, stress values at a moderate level and moderate preservation conditions, is classified as class Ⅱ favorable zone;The Shimen-Jinping fault anti-cline, which has undergone strong transformation and is prone to large-scale shear fractures, making the preservation conditions damaged, is classified as class Ⅲ unfavorable zone.

Key words: thin plate model, rock mechanics parameter, finite element numerical simulation, tectonic stress field, shear fracture, Coulomb-Moore fracture criterion, fracture index, marine shale, Wufeng-Longmaxi Formation, southern Fuling area, Sichuan Basin

中图分类号: 

  • TE122.1
[1] 郭彤楼. 涪陵页岩气田发现的启示与思考[J]. 地学前缘, 2016, 23(1):29-43. GUO Tonglou. Discovery and characteristics of the Fuling shale gais field and its enlightenment and thinking[J]. Earth Science Frontiers, 2016, 23(1):29-43.
[2] 郭旭升, 胡德高, 舒志国, 等. 重庆涪陵国家级页岩气示范区勘探开发建设进展与展望[J]. 天然气工业, 2022, 42(8):14-23. GUO Xusheng, HU Degao, SHU Zhiguo, et al. Exploration, development and construction in the Fuling national shale gas demonstration area in Chongqing:Progress and prospect[J]. Natural Gas Industry, 2022, 42(8):14-23.
[3] 蔡勋育, 赵培荣, 高波, 等. 中国石化页岩气"十三五" 发展成果与展望[J]. 石油与天然气地质, 2021, 42(1):16-27. CAI Xunyu, ZHAO Peirong, GAO Bo, et al. Sinopec's shale gas development achievements during the "Thirteenth Five-Year Plan" period and outlook for the future[J]. Oil and Gas Geology, 2021, 42(1):16-27.
[4] GALE J F W, REED R M, HOLDER J. Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments[J]. AAPG Bulletin, 2007, 91(4):603-622.
[5] CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11):1921-1938.
[6] 曾联波, 肖淑蓉. 低渗透储集层中的泥岩裂缝储集体[J]. 石油实验地质, 1999, 21(3):266-269. ZENG Lianbo, XIAO Shurong. Fractured in the mudstone of tight reservoirs[J]. Experimental Petroleum Geology, 1999, 21(3):266-269.
[7] 孙焕泉, 蔡勋育, 胡德高, 等. 页岩气立体开发理论技术与实践:以四川盆地涪陵页岩气田为例[J]. 石油勘探与开发, 2023, 50(3):573-584. SUN Huanquan, CAI Xunyu, Hu Degao, et al. Theory, technology and practice of shale gas three-dimensional development:A case study of Fuling shale gas field in Sichuan Basin, SW Chia[J]. Petroleum Exploration and Development, 2023, 50(3):573-584.
[8] 曾联波, 马诗杰, 田鹤, 等. 富有机质页岩天然裂缝研究进展[J]. 地球科学, 2023, 48(7):1-15. ZENG Lianbo, MA Shijie, TIAN He, et al. Research progress of natural fractures in organic rich shale[J]. Earth Science, 2023, 48(7):1-15.
[9] 徐姣, 孙庆莉, 段杰, 等. 四川盆地东部涪陵-巴南地区茅口组储层特征及预测[J]. 天然气勘探与开发, 2019, 42(3):86-94. XU Jiao, SUN Qingli, DUAN Jie, et al. Predicting reservoir characteristics of Maokou Formation, Fuling-Ba'nan area, eastern Sichuan Basin[J]. Natural Gas Exploration and Development, 2019, 42(3):86-94.
[10] 车世琦. 四川盆地涪陵地区页岩裂缝测井定量识别[J]. 特种油气藏, 2017, 24(6):72-78. CHE Shiqi. Quantitative identification of shale fracture with logging in Fuling of Sichuan Basin[J]. Special Oil and Gas Reservoirs, 2017, 24(6):72-78.
[11] 丁文龙, 曾维特, 王濡岳, 等. 页岩储层构造应力场模拟与裂缝分布预测方法及应用[J]. 地学前缘, 2016, 23(2):63-74. DING Wenlong, ZENG Weite, WANG Ruyue, et al. Methond and application of tectonic stress field simulation and fracture distribution prediction in shale reservoir[J]. Earth Science Frontiers, 2016, 23(2):63-74.
[12] 曾联波, 文世鹏, 肖淑蓉. 低渗透油气储集层裂缝空间分布的定量预测[J].勘探家, 1998, 3(2):24-26. ZENG Lianbo, WEN Shipeng, XIAO Shurong. Quantitative prediction of fracture space distribution in low-permeability reservoir[J]. Petroleum Explorationist, 1998, 3(2):24-26.
[13] 张砚, 惠栋, 张鉴, 等. 四川盆地海相页岩水蒸气吸附特征及其主控因素:以川南地区下志留统龙马溪组页岩为例[J]. 石油与天然气地质, 2022, 43(6):1431-1444. ZHANG Yan, HUI Dong, ZHANG Jian, et al. Characteristics and main controlling factors of water vapor adsorption in marine shale:A case study of the Lower Silurian Longmaxi shales in southern Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(6):1431-1444.
[14] 何龙, 郑荣才, 梁西文, 等. 川东涪陵地区大安寨段裂缝控制因素及期次分析[J]. 岩性油气藏, 2014, 26(4):88-96. HE Long, ZHENG Rongcai, LIANG Xiwen, et al. Controlling factors and development periods of fracture of Da'anzhai member in Fuling area, eastern Sichuan Basin[J]. Lithologic Reservoirs, 2014, 26(4):88-96.
[15] TIAN He, ZENG Lianbo, MA Shijie, et al. Effects of different types of fractures on shale gas preservation in Lower Cambrian shale of northern Sichuan Basin:Evidence from macro-fracture characteristics and microchemical analysis[J]. Journal of Petroleum Science and Engineering, 2022, 218:110973.
[16] 唐永, 周立夫, 陈孔全, 等. 川东南构造应力场地质分析及构造变形成因机制讨论[J]. 地质论评, 2018, 64(1):15-28. TANG Yong, ZHOU Lifu, CHEN Kongquan, et al. Analysis of tectonic stress field of southeastern Sichuan and formation mechanism of tectonic deformation[J]. Geological Review, 2018, 64(1):15-28.
[17] 朱梦月, 秦启荣, 李虎, 等. 川东南DS地区龙马溪组页岩裂缝发育特征及主控因素[J]. 油气地质与采收率, 2017, 24(6):54-59. ZHU Mengyue, QIN Qirong, LI Hu, et al. Development characteristics and controlling factors of shale fractures in the Longmaxi Formation in DS area, southeast Sichuan[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(6):54-59.
[18] 范存辉, 李虎, 钟城, 等. 川东南丁山构造龙马溪组页岩构造裂缝期次及演化模式[J]. 石油学报, 2018, 39(4):379-390. FAN Cunhui, LI Hu, ZHONG Cheng, et al. Tectonic fracture stages and evolution model of Longmaxi Formation shale, Dingshan structure,southeast Sichuan[J]. Acta Petrolei Sinica, 2018, 39(4):379-390.
[19] 邱楠生, 冯乾乾, 腾格尔, 等. 川东南丁山地区燕山期-喜马拉雅期差异构造-热演化与页岩气保存[J]. 石油学报, 2020, 41(12):1610-1622. QIU Nansheng, FENG Qianqian, TENGER et al. Yanshan-himalayan differential tectonic-thermal evolution and shale gas preservation in Dingshan area, southeast Sichuan Basin[J]. Acta Petrolei Sinica, 2020, 41(12):1610-1622.
[20] 郭旭升, 胡东风, 魏志红, 等. 涪陵页岩气田的发现与勘探认识[J]. 中国石油勘探, 2016, 21(3):24-37. GUO Xusheng, HU Dongfeng, WEI Zhihong, et al. Discovery and exploration of Fuling shale gas field[J]. China Petroleum Exploration, 2016, 21(3):24-37.
[21] 宋金民, 张亚雄, 尹柯惟, 等.四川盆地中部地区下寒武统龙王庙组混积特征及其地质意义[J].石油与天然气地质, 2021, 42(3):627-638. SONG Jinmin, ZHANG Yaxiong, YIN Kewei, et al. Characteristics and geological significance of mixed sediments in the Lower Cambrian Longwangmiao Formation, central Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(3):627-638.
[22] 邹玉涛, 李让彬, 张新. 川东南涪陵地区构造演化与油气成藏关系[J]. 天然气勘探与开发, 2016, 39(1):9-13. ZOU Yutao, LI Rangbin, ZHANG Xin. Relationship between tectonic evolution and reservoir forming in Fuling area, southeastern sichuan Basin[J]. Natural Gas Exploration and Development, 2016, 39(1):9-13.
[23] 聂海宽, 包书景, 高波, 等. 四川盆地及其周缘上奥陶统-下志留统页岩气成藏体系研究[J]. 石油实验地质, 2012, 34(2):115-119. NIE Haikuan, BAO Shujing, GAO Bo, et al. Accumulation system for shale gas from Upper Ordovician to Lower Silurian in Sichuan Basin and surrounding areas[J]. Petroleum Geology & Experiment, 2012, 34(2):115-119.
[24] 孙健, 罗兵. 四川盆地涪陵页岩气田构造变形特征及对含气性的影响[J]. 石油与天然气地质, 2016, 37(6):809-818. SUN Jian, LUO Bing. Structural deformation and its influences on gas storage in Fuling shale gas play, the Sichuan Basin[J]. Oil & Gas Geology, 2016, 37(6):809-818.
[25] 郭旭升, 胡东风, 魏祥峰, 等. 四川盆地焦石坝地区页岩裂缝发育主控因素及对产能的影响[J]. 石油与天然气地质, 2016, 37(6):799-808. GUO Xusheng, HU Dongfeng, WEI Xiangfeng, et al. Main controlling factors on shale fracture and their influences on production capacity in Jiaoshiba area, the Sichuan Basin[J]. Oil & Gas Geology, 2016, 37(6):799-808.
[26] 胡东风, 魏志红, 刘若冰, 等. 湖相页岩油气富集主控因素与勘探潜力:以四川盆地涪陵地区侏罗系为例[J]. 天然气工业, 2021, 41(8):113-120. HU Dongfeng, WEI Zhihong, LIU Ruobing, et al. Enrichment control factors and exploration potential of lacustrine shale oil and gas:A case study of Jurassic in the Fuling area of the Sichuan Basin[J]. Natural Gas Industry, 2021, 41(8):113-120.
[27] 田鹤, 曾联波, 徐翔, 等. 四川盆地涪陵地区海相页岩天然裂缝特征及对页岩气的影响[J]. 石油与天然气地质, 2020, 41(3):474-483. TIAN He, ZENG Lianbo, XU Xiang, et al. Characteristics of natural fractures in marine shale in Fuling area, Sichuan Basin and their influence on shale gas[J]. Oil & Gas Geology, 2020, 41(3):474-483.
[28] 王超, 张柏桥, 舒志国, 等. 四川盆地涪陵地区五峰组-龙马溪组海相页岩岩相类型及储层特征[J]. 石油与天然气地质, 2018, 39(3):485-497. WANG Chao, ZHANG Boqiao, SHU Zhiguo, et al. Lithofacies types and reservoir characteristics of marine shales of the Wufeng Formation-Longmaxi Formation in Fuling area, the Sichuan Basin[J]. Oil & Gas Geology, 2018, 39(3):485-497.
[29] 彭勇民, 龙胜祥, 胡宗全, 等. 四川盆地涪陵地区页岩岩石相标定方法与应用[J]. 石油与天然气地质, 2016, 37(6):964-970. PENG Yongmin, LONG Shengxiang, HU Zongquan, et al. Calibration method of shale petrological facies and its application in Fuling area, the Sichuan Basin[J]. Oil & Gas Geology, 2016, 37(6):964-970.
[30] 姜鹏飞, 吴建发, 朱逸青, 等. 四川盆地海相页岩气富集条件及勘探开发有利区[J]. 石油学报, 2023, 44(1):91-109. JIANG Pengfei, WU Jianfa, ZHU Yiqing, et al. Enrichment conditions and favorable areas for exploration and development of marine shale gas in Sichuan Basin[J]. Acta Petrolei Sinica, 2023, 44(1):91-109.
[31] 弓义, 李天宇, 吴凯凯, 等. 涪陵页岩气田五峰组-龙马溪组页岩气保存条件评价[J]. 海相油气地质, 2020, 25(3):253-262. GONG Yi, LI Tianyu, WU Kaikai, et al. Evaluation of shale gas preservation condition of Wufeng Formation-Longmaxi Formation in Fuling shale gas field[J]. Marine oil and gas geology, 2020, 25(3):253-262.
[32] 方栋梁, 孟志勇. 页岩气富集高产主控因素分析:以四川盆地涪陵地区五峰组-龙马溪组一段页岩为例[J]. 石油实验地质, 2020, 42(1):37-41. FANG Dongliang, MENG Zhiyong. Main controlling factors of shale gas enrichment and high yield:A case study of WufengLongmaxi formations in Fuling area, Sichuan Basin[J]. Petroleum Geology & Experiment, 2020, 42(1):37-41.
[33] 王威, 石文斌, 付小平, 等. 四川盆地涪陵地区中侏罗统凉高山组陆相页岩油气富集规律探讨[J]. 天然气地球科学, 2022, 33(5):764-774. WANG Wei, SHI Wenbin, FU Xiaoping, et al. Oil and gas enrichment regularity of continental shale of Lianggaoshan Formation of Middle Jurassic in Fuling area, Sichuan Basin[J]. Natural Gas Geoscience, 2022, 33(5):764-774.
[34] 张光荣, 聂海宽, 唐玄, 等. 基于地层水指标的页岩气保存条件评价:以渝东南地区五峰组-龙马溪组页岩气藏为例[J]. 油气藏评价与开发, 2021, 11(1):47-55. ZHANG Guangrong, NIE Haikuan, TANG Xuan, et al. Evaluation of shale gas preservation conditions based on formation water index:A case study of Wufeng-Longmaxi Formation in southeastern Chongqing[J]. Reservoir Evaluation and Development, 2021, 11(1):47-55.
[35] 马诗杰, 曾联波, 石学文, 等. 四川盆地泸州地区海相页岩天然裂缝特征及主控因素[J]. 地球科学, 2023, 48(7):2630-2642. MA Shijie, ZENG Lianbo, SHI Xuewen, et al. Characteristics and main control factors of natural fractures in marine shale in Luzhou area, Sichuan Basin[J]. Earth Science, 2023, 48(7):2630-2642.
[36] 岳锋, 焦伟伟, 郭淑军. 渝东南牛蹄塘组页岩裂缝及其分布控制因素[J]. 煤田地质与勘探, 2015, 43(6):39-44. YUE Feng, JIAO Weiwei, GUO Shujun. Controlling factors of fracture distribution of shale in Lower Cambrian Niutitang Formation in southeast Chongqing[J]. Coalfield Geology & Exploration, 2015, 43(6):39-44.
[37] 张金川, 薛会, 张德明, 等. 页岩气及其成藏机理[J]. 现代地质, 2003, 17(4):466. ZHANG Jinchuan, XUE Hui, ZHANG Deming, et al. Shale gas and its reservoir formation mechanism[J]. Modern Geology, 2003, 17(4):466.
[38] 胡明, 黄文斌, 李加玉. 构造特征对页岩气井产能的影响:以涪陵页岩气田焦石坝区块为例[J]. 天然气工业, 2017, 37(8):31-39. HU Ming, HUANG Wenbin, LI Jiayu. Effects of structural characteristics on the productivity of shale gas wells:A case study on the Jiaoshiba block in the Fuling shale gasfield, Sichuan Basin[J]. Natural Gas Industry, 2017, 37(8):31-39.
[39] 潘磊, 徐祖新, 李让彬, 等. 川东南涪陵地区基底断裂特征与油气成藏[J]. 特种油气藏, 2020, 27(4):19-25. PAN Lei, XU Zuxin, LI Rangbin, et al. Basement fault characteristics and hydrocarbon accumulation in Fuling of southeast Sichuan[J]. Special Oil and Gas Reservoirs, 2020, 27(4):19-25.
[40] 罗兵, 郁飞, 陈亚琳, 等. 四川盆地涪陵地区页岩气层构造特征与保存评价[J]. 石油实验地质, 2018, 40(1):103-109. LUO Bing, YU Fei, CHEN Yalin, et al. Structural features and preservation evaluation of shale gas reservoirs in the Fuling area, Sichuan Basin[J]. Petroleum Geology & Experiment, 2018, 40(1):103-109.
[41] 董敏, 郭伟, 张林炎, 等. 川南泸州地区五峰组-龙马溪组古构造应力场及裂缝特征[J]. 岩性油气藏, 2022, 34(1):43-51. DONG Min, GUO Wei, ZHANG Linyan, et al. Characteristics of paleotectonic stress field and fractures ofWufeng-Longmaxi Formation in Luzhou area, southern Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(1):43-51.
[42] JIU K, DING W L, HUANG W H, et al. Simulation of paleotectonic stress fields within Paleogene shale reservoirs and prediction of favorable zones for fracture development within the Zhanhua Depression, Bohai Bay Basin, east China[J]. Journal of Petroleum Science and Engineering, 2013, 110:119-131.
[43] DING Wenlong, FAN Tailiang, YU Bingsong, et al. Ordovician carbonate reservoir fracture characteristics and fracture distribution forecasting in the Tazhong area of Tarim Basin, northwest China[J]. Journal of Petroleum Science and Engineering, 2012, 86:62-70.
[44] 郑荣才. 储层裂缝研究的新方法——声发射实验[J]. 石油与天然气地质, 1998, 19(3):16-19. ZHENG Rongcai. A new method of studying reservoir fracture:A coustic emission experiment[J]. Oil & Gas Geology, 1998, 19(3):16-19.
[45] JU Wei, WANG Jilin, FANG Huihuang, et al. Paleotectonic stress field modeling and prediction of natural fractures in the Lower Silurian Longmaxi shale reservoirs, Nanchuan region, south China[J]. Marine and Petroleum Geology, 2018, 100:20-30.
[1] 闫雪莹, 桑琴, 蒋裕强, 方锐, 周亚东, 刘雪, 李顺, 袁永亮. 四川盆地公山庙西地区侏罗系大安寨段致密油储层特征及高产主控因素[J]. 岩性油气藏, 2024, 36(6): 98-109.
[2] 陈康, 戴隽成, 魏玮, 刘伟方, 闫媛媛, 郗诚, 吕龑, 杨广广. 致密砂岩AVO属性的贝叶斯岩相划分方法——以川中地区侏罗系沙溪庙组沙一段为例[J]. 岩性油气藏, 2024, 36(5): 111-121.
[3] 杨学锋, 赵圣贤, 刘勇, 刘绍军, 夏自强, 徐飞, 范存辉, 李雨桐. 四川盆地宁西地区奥陶系五峰组—志留系龙马溪组页岩气富集主控因素[J]. 岩性油气藏, 2024, 36(5): 99-110.
[4] 周刚, 杨岱林, 孙奕婷, 严威, 张亚, 文华国, 和源, 刘四兵. 四川盆地及周缘寒武系沧浪铺组沉积充填过程及油气地质意义[J]. 岩性油气藏, 2024, 36(5): 25-34.
[5] 张晓丽, 王小娟, 张航, 陈沁, 关旭, 赵正望, 王昌勇, 谈曜杰. 川东北五宝场地区侏罗系沙溪庙组储层特征及主控因素[J]. 岩性油气藏, 2024, 36(5): 87-98.
[6] 计玉冰, 郭冰如, 梅珏, 尹志军, 邹辰. 四川盆地南缘昭通示范区罗布向斜志留系龙马溪组页岩储层裂缝建模[J]. 岩性油气藏, 2024, 36(3): 137-145.
[7] 白雪峰, 李军辉, 张大智, 王有智, 卢双舫, 隋立伟, 王继平, 董忠良. 四川盆地仪陇—平昌地区侏罗系凉高山组页岩油地质特征及富集条件[J]. 岩性油气藏, 2024, 36(2): 52-64.
[8] 岑永静, 梁锋, 王立恩, 刘倩虞, 张鑫哲, 丁熊. 四川盆地蓬莱—中江地区震旦系灯影组二段成藏特征[J]. 岩性油气藏, 2024, 36(2): 89-98.
[9] 张文播, 李亚, 杨田, 彭思桥, 蔡来星, 任启强. 四川盆地简阳地区二叠系火山碎屑岩储层特征与成岩演化[J]. 岩性油气藏, 2024, 36(2): 136-146.
[10] 孙汉骁, 邢凤存, 谢武仁, 钱红杉. 四川盆地及周缘地区晚奥陶世岩相古地理演化[J]. 岩性油气藏, 2024, 36(1): 121-135.
[11] 李毕松, 苏建龙, 蒲勇, 缪志伟, 张文军, 肖伟, 张雷, 江馀. 四川盆地元坝地区二叠系茅口组相控岩溶刻画及预测[J]. 岩性油气藏, 2024, 36(1): 69-77.
[12] 张坦, 贾梦瑶, 孙雅雄, 丁文龙, 石司宇, 范昕禹, 姚威. 四川盆地南部中二叠统茅口组岩溶古地貌恢复及特征[J]. 岩性油气藏, 2024, 36(1): 111-120.
[13] 魏全超, 李小佳, 李峰, 郝景宇, 邓双林, 吴娟, 邓宾, 王道军. 四川盆地米仓山前缘旺苍地区下寒武统筇竹寺组裂缝脉体发育特征及意义[J]. 岩性油气藏, 2023, 35(5): 62-70.
[14] 李丰丰, 倪小威, 徐思慧, 魏新路, 刘迪仁. 斜井各向异性地层随钻侧向测井响应规律及快速校正方法[J]. 岩性油气藏, 2023, 35(3): 161-168.
[15] 黄彦庆, 刘忠群, 王爱, 肖开华, 林恬, 金武军. 四川盆地元坝地区上三叠统须家河组三段致密砂岩气甜点类型与分布[J]. 岩性油气藏, 2023, 35(2): 21-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[2] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[3] 林承焰, 谭丽娟, 于翠玲. 论油气分布的不均一性(Ⅰ)———非均质控油理论的由来[J]. 岩性油气藏, 2007, 19(2): 16 -21 .
[4] 王天琦, 王建功, 梁苏娟, 沙雪梅. 松辽盆地徐家围子地区葡萄花油层精细勘探[J]. 岩性油气藏, 2007, 19(2): 22 -27 .
[5] 王西文,石兰亭,雍学善,杨午阳. 地震波阻抗反演方法研究[J]. 岩性油气藏, 2007, 19(3): 80 -88 .
[6] 何宗斌,倪 静,伍 东,李 勇,刘丽琼,台怀忠. 根据双TE 测井确定含烃饱和度[J]. 岩性油气藏, 2007, 19(3): 89 -92 .
[7] 袁胜学,王 江. 吐哈盆地鄯勒地区浅层气层识别方法研究[J]. 岩性油气藏, 2007, 19(3): 111 -113 .
[8] 陈斐,魏登峰,余小雷,吴少波. 鄂尔多斯盆地盐定地区三叠系延长组长2 油层组沉积相研究[J]. 岩性油气藏, 2010, 22(1): 43 -47 .
[9] 徐云霞,王山山,杨帅. 利用沃尔什变换提高地震资料信噪比[J]. 岩性油气藏, 2009, 21(3): 98 -100 .
[10] 李建明,史玲玲,汪立群,吴光大. 柴西南地区昆北断阶带基岩油藏储层特征分析[J]. 岩性油气藏, 2011, 23(2): 20 -23 .