岩性油气藏 ›› 2025, Vol. 37 ›› Issue (3): 73–83.doi: 10.12108/yxyqc.20250307

• 地质勘探 • 上一篇    

川西新场地区三叠系须二段构造裂缝特征及定量预测

杨旭1,2, 白鸣生1,2, 龚汉渤3, 李皋1,2, 陶祖文1   

  1. 1. 西南石油大学 石油与天然气工程学院, 成都 610500;
    2. 油气钻完井技术国家工程研究中心欠平衡/气体钻井实验室, 成都 610500;
    3. 中国石化西南油气分公司, 成都 610041
  • 收稿日期:2024-08-29 修回日期:2024-11-06 发布日期:2025-05-10
  • 第一作者:杨旭(1988—),男,博士,讲师,主要从事石油工程岩石力学与工程地质力学方面的研究工作。地址:(610500)四川省成都市新都区西南石油大学石油与天然气工程学院。Email:xu.yang@swpu.edu.cn。
  • 基金资助:
    国家自然科学基金“深井超深井井筒多相瞬态流动模型与压力演变规律研究”(编号:51904264)与四川省自然科学基金项目“超深层裂缝性气层钻井复杂工况井筒瞬态流动特性及井口回压控制压力反馈规律研究(团队)”(编号:2023NSFSC0929)联合资助。

Characteristics and quantitative prediction of structural fractures in the second member of Triassic Xujiahe Formation in Xinchang area, western Sichuan Basin

YANG Xu1,2, BAI Mingsheng1,2, GONG Hanbo3, LI Gao1,2, TAO Zuwen1   

  1. 1. College of Petroleum and Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China;
    2. Underbalanced/Gas Drilling Laboratory, National Engineering Research Center of Oil & Gas Drilling and Completion Technology, Chengdu 610500, China;
    3. Southwest Oil & Gas Branch, Sinopec, Chengdu 610041, China
  • Received:2024-08-29 Revised:2024-11-06 Published:2025-05-10

摘要: 川西坳陷新场地区三叠系须家河组二段储层致密,其构造裂缝发育与分布特征对气藏高效开发至关重要。基于成像测井资料分析了研究区储层构造裂缝的发育特征,并在非均质岩石力学模型基础上,利用有限元模拟方法、岩石破裂准则与弹性应变能,开展了目的层在喜马拉雅时期的构造应力场、构造裂缝的数值模拟和定量预测。研究结果表明:①川西新场地区三叠系须二段裂缝以构造剪切缝为主,裂缝走向按发育程度依次为NWW向、NEE向、近EW向和近SN向;其形成期次主要包括印支晚期、燕山期、喜马拉雅早期和喜马拉雅晚期4期,前2期形成的裂缝大多被方解石或石英充填,仅喜马拉雅时期形成的裂缝为有效缝。②喜马拉雅运动时期,须二段水平最大主应力主要为65~100 MPa,水平最小主应力主要为50~85 MPa,其应力分布受构造部位和岩相控制。③研究区构造裂缝平均密度整体较小,为0.28条/m,断层附近的裂缝密度大于1.20条/m,不同岩相中的裂缝密度差异明显,断层、构造部位和岩相等因素共同控制着裂缝的分布。④裂缝预测结果与实测结果的平均绝对误差为11.40%,预测结果可靠。

关键词: 构造裂缝, 构造应力场, 数值模拟, 裂缝定量预测, 构造部位, 岩相, 须二段, 三叠系, 新场地区, 川西坳陷

Abstract: The second member of Triassic Xujiahe Formation in Xinchang area of western Sichuan Basin has dense reservoirs,the development and distribution of structural fractures are crucial for the efficient development of gas reservoirs. Based on imaging logging data,the development characteristics of reservoir structural fractures in the study area were analyzed. Based on the heterogeneous rock mechanics model,the numerical simulation and quantitative prediction of the tectonic stress field and structural fractures in the target layer during Himalayan period were carried out by using the finite element simulation method,rock fracture criterion and elastic strain energy. The results show that:(1)The fractures in the second member of Triassic Xujiahe Formation in Xinchang area of western Sichuan are mainly structural shear fractures,with fractures trending in NWW direction,NEE direction,near EW direction,and SN direction according to their development degree. The formation stages of the fractures mainly include the late Indosinian,Yanshanian,early Himalayan,and late Himalayan. The fractures formed in the late Indosinian and Yanshanian filled with calcite or quartz,and only the fractures formed in Himalayan were effective.(2)During the Himalayan movement,the maximum horizontal principal stress of the second member of Xujiahe Formation was mainly 65-100MPa,and the minimum horizontal principal stress was mainly 50-85MPa. The tectonic position and lithofacies of the strata controlled the stress distribution.(3)The average density of structural fractures in the research area is relatively small,at 0.28 fractures per meter,and the density of fractures near the faults is greater than 1.20 fractures per meter. The density of fractures in different lithofacies varies significantly. The distribution of fractures is jointly controlled by factors such as faults,tectonic position,and lithofacies.(4)The average absolute percentage error between the fracture prediction results and the measured results is 11.40%,and the prediction results are reliable.

Key words: structural fractures, structural stress field, numerical simulation, fracture quantitative prediction, tectonic position, lithofacies, the second member of Xujiahe Formation, Triassic, Xinchang area, western Sichuan Depression

中图分类号: 

  • TE122.2
[1] 曾联波,吕鹏,屈雪峰,等. 致密低渗透储层多尺度裂缝及其形成地质条件[J]. 石油与天然气地质,2020,41(3):449-454. ZENG Lianbo,LYU Peng,QU Xuefeng,et al. Multi-scale fractures in tight sandstone reservoirs with low permeability and geological conditions of their development[J]. Oil & Gas Geology, 2020,41(3):449-454.
[2] 康保平,黄小燕,郭淑萍,等. 川西坳陷须二气藏气田水成因、运移其成藏演化[J]. 石油与天然气地质,2018,39(2):309-317. KANG Baoping,HUANG Xiaoyan,GUO Shuping,et al. Origin, migration,and accumulation evolution of reservoir water in the gas field with Xu 2 gas reservoir,western Sichuan Depression, Sichuan Basin[J]. Oil & Gas Geology,2018,39(2):309-317.
[3] 罗群,张泽元,袁珍珠,等. 致密油甜点的内涵、评价与优选:以酒泉盆地青西凹陷白垩系下沟组为例[J]. 岩性油气藏, 2022,34(4):1-12. LUO Qun,ZHANG Zeyuan,YUAN Zhenzhu,et al. Connotation, evaluation and optimization of tight oil sweet spots:A case study of Cretaceous Xiagou Formation in Qingxi Sag,Jiuquan Basin[J]. Lithologic Reservoirs,2022,34(4):1-12.
[4] 刘冬冬,杨东旭,张子亚,等. 基于常规测井和成像测井的致密储层裂缝识别方法:以准噶尔盆地吉木萨尔凹陷芦草沟组为例[J]. 岩性油气藏,2019,31(3):76-85. LIU Dongdong,YANG Dongxu,ZHANG Ziya,et al. Fracture identification for tight reservoirs by conventional and imaging logging:A case study of Permian Lucaogou Formation in Jimsar Sag,Junggar Basin[J]. Lithologic Reservoirs,2019,31(3):76-85.
[5] 董国良,周文,高伟平,等. 川西坳陷新场气田须家河组二段储层裂缝特征及识别[J]. 复杂油气藏,2012,5(2):5-9. DONG Guoliang,ZHOU Wen,GAO Weiping,et al. Reservoir fractures characteristics and identification of the second member of Xujiahe Formation in Xinchang Gasfield of western Sichuan Depression[J]. Complex Hydrocarbon Reservoirs,2012, 5(2):5-9.
[6] 李王鹏,刘忠群,胡宗全,等. 四川盆地川西坳陷新场须家河组二段致密砂岩储层裂缝发育特征及主控因素[J]. 石油与天然气地质,2021,42(4):884-897. LI Wangpeng,LIU Zhongqun,HU Zongquan,et al. Characteristics of and main factors controlling the tight sandstone reservoir fractures in the 2nd member of Xujiahe Formation in Xinchang area,Western Sichuan Depression,Sichuan Basin[J]. Oil & Gas Geology,2019,42(4):884-897.
[7] 任浩林,刘成林,刘文平,等. 四川盆地富顺-永川地区五峰组:龙马溪组应力场模拟及裂缝发育区预测[J]. 地质力学学报,2020,26(1):74-83. REN Haolin,LIU Chenglin,LIU Wenping,et al. Stress field simulation and fracture development prediction of the Wufeng Formation-Longmaxi Formation in the Fushun-Yongchuan Block,Sichuan Basin[J]. Journal of Geomechanics,2020,26(1):74-83.
[8] 刘俊州,韩磊,时磊,等. 致密砂岩储层多尺度裂缝地震预测技术:以川西XC地区为例[J]. 石油与天然气地质,2021,42(3):747-754. LIU Junzhou,HAN Lei,SHI Lei,et al. Seismic prediction of tight sandstone reservoir fractures in XC area western Sichuan Basin[J]. Oil & Gas Geology,2021,42(3):747-754.
[9] 董敏,郭伟,张林炎,等. 川南泸州地区五峰-龙马溪组古构造应力场及裂缝特征[J]. 岩性油气藏,2022,34(1):43-51. DONG Min,GUO Wei,ZHANG Linyan,et al. Characteristics of paleotectonic stress field and fractures of Wufeng-Longmaxi Formation in Luzhou area,southern Sichuan Basin[J]. Lithologic Reservoirs,2022,34(1):43-51.
[10] 熊天鹤,袁红旗. 3Dmove模拟构造裂缝预测技术在川西新场构造须二段中的应用[J]. 矿产勘查,2018,9(6):1276-1280. XIONG Tianhe,YUAN Hongqi. Application of 3Dmove fracture prediction technique in predicting in Tx2 formation of Xinchang area[J]. Mineral Exploration,2018,9(6):1276-1280.
[11] 黄静,李琦,康元欣,等. 致密砂岩气储层微观孔隙及成岩作用特征:以川西新场地区须五段为例[J]. 岩性油气藏,2016, 28(2):24-32. HUANG Jing,LI Qi,KANG Yuanxin,et al. Characteristics of micropores and diagenesis of tight sandstone reservoirs:A case study from the fifth member of Xujiahe Formation in Xinchang area,western Sichuan Depression[J]. Lithologic Reservoirs, 2016,28(2):24-32.
[12] 李阳兵. 川西坳陷新场构造带须二段致密砂岩储层特征及综合评价[J]. 断块油气田,2024,31(4):629-636. LI Yangbing. Characteristics and comprehensive evaluation of tight sandstone reservoirsin Xu2 member of Xinchang structural belt in western Sichuan Depression[J]. Fault-Block Oil & Gas Field,2024,31(4):629-636.
[13] 张世华,田军,叶素娟,等. 川西坳陷新场构造带须二段气藏成藏过程[J]. 天然气工业,2019,39(增刊1):17-22. ZHANG Shihua,TIAN Jun,YE Sujuan,et al. Gas accumulation process of the Xu-2 Formation in Xinchang structural belt, western Sichuan Depression[J]. Natural Gas Industry,2019,39(Suppl 1):17-22.
[14] 田军,张世华,叶素娟,等. 川西坳陷新场构造带须二段气藏类型划分及成藏主控因素[J]. 成都理工大学学报(自然科学版),2017,44(6):659-667. TIAN Jun,ZHANG Shihua,YE Sujuan,et al. Classification of gas accumulation types and main controlling factors of gas accumulation of the Xu-2 member in Xinchang structural zone, western Sichuan Depression,China[J]. Journal of Chengdu University of Technology(Science & Technology Edition),2017, 44(6):659-667.
[15] 苏亦晴,杨威,金惠,等. 川西北地区三叠系须家河组深层储层特征及主控因素[J]. 岩性油气藏,2022,34(5):86-99. SU Yiqing,YANG Wei,JIN Hui,et al. Deep-reservoir characteristics and main controlling factors of Triassic Xujiahe Formation in northwestern Sichuan Basin[J]. Lithologic Reservoirs, 2022,34(5):86-99.
[16] 李朋威,胡宗全,刘忠群,等. 川西新场地区须二段深层致密砂岩储层类型与差异控储作用[J]. 天然气地球科学,2024, 35(7):1136-1149. LI Pengwei,HU Zongquan,LIU Zhongqun,et al. Types of the deep tight sandstone reservoirs and their different controlling in the second member of Xujiahe Formation in Xinchang area, western Sichuan Basin[J]. Natural Gas Geoscience,2024,35(7):1136-1149.
[17] 马旭杰,周文,唐瑜,等. 川西新场地区须家河组二段气藏天然裂缝形成期次的确定[J]. 天然气工业,2013,33(8):15-19. MA Xujie,ZHOU Wen,TANG Yu,et al. Timing of natural fractures formed in the gas reservoirs of the 2nd member of Xujiahe Fm in the Xinchang area,western Sichuan Basin[J]. Natural Gas Industry,2013,33(8):15-19.
[18] 罗龙,高先志,孟万斌,等. 深埋藏致密砂岩中相对优质储层形成机理:以川西坳陷新场构造带须家河组为例[J]. 地球学报,2017,38(6):930-944. LUO Long,GAO Xianzhi,MENG Wanbin,et al. The formation mechanism of the relatively high-quality reservoir in tight sandstones with deep burial:A case study of Xujiahe Formation in Xinchang structural belt of western Sichuan Depression[J]. Acta Geoscientia Sinica,2017,38(6):930-944.
[19] 杨映涛,李旻,张庄,等. 叠覆型致密砂岩气区形成条件[J]. 天然气工业,2019,39(增刊1):30-35.YANG Yingtao,LI Min,ZHANG Zhuang,et al. Formation conditions of overlapping tight sandstone gas areas[J]. Natural Gas Industry,2019,39(Suppl 1):30-35.
[20] JIU Kai,DING Wenlong,HUANG Wenhui,et al. Simulation of paleotectonic stress fields within Paleogene shale reservoirs and prediction of favorable zones for fracture development within the Zhanhua Depression,Bohai Bay Basin,east China[J]. Journal of Petroleum Science and Engineering,2013,110:119-131.
[21] 包汉勇,刘超,甘玉青,等. 四川盆地涪陵南地区奥陶系五峰组-志留系龙马溪组页岩古构造应力场及裂缝特征[J]. 岩性油气藏,2024,36(1):14-22. BAO Hanyong,LIU Chao,GAN Yuqing,et al. Paleotectonic stress field and fracture characteristics of shales of Ordovician Wufeng Formation to Silurian Longmaxi Formation in southern Fuling area,Sichuan Basin[J]. Lithologic Reservoirs,2024,36(1):14-22.
[22] 李辉,林承焰,任丽华,等. 基于岩相-断层破碎带耦合约束的构造裂缝预测研究:以博兴洼陷大芦湖油田沙三中亚段为例[J]. 中国矿业大学学报,2020,49(2):305-317. LI Hui,LIN Chengyan,REN Lihua,et al. Tectonic fracture prediction based on the coupling constraint of lithofacies and fault damage zone:A case study of the 2nd sand group of middle Es3 member in Daluhu oilfield,Boxing subsag[J]. Journal of China University of Mining & Technology,2020,49(2):305-317.
[23] 商晓飞,赵磊,易杰,等. 川西新场地区须家河组二段砂体沉积充填特征及定量地质建模[J]. 中国海上油气,2022,34(4):144-155. SHANG Xiaofei,ZHAO Lei,YI Jie,et al. Sedimentary filling characteristics and quantitative geological modeling of sand bodies in Xu2 member of Xujiahe Formation in Xinchang area, western Sichuan Basin[J]. China Offshore Oil and Gas,2022, 34(4):144-155.
[24] LIU Jingshou,DING Wenlong,GU Yang,et al. Methodology for predicting reservoir breakdown pressure and fracture opening pressure in low-permeability reservoirs based on an in situ stress simulation[J]. Engineering Geology,2018,246:222-232.
[25] 黄国权. 有限元法基础及ANSYS应用[M]. 北京:机械工业出版社,2004. HUANG Guoquan. Foundation of the finite element method and application of ANSYS[M]. Beijing:Machinery Industry Press,2004.
[26] 罗乃菲. 川西坳陷中段须家河组致密储层特征及成因机制[D]. 成都:成都理工大学,2015. LUO Naifei. Characteristics and genetic mechanism of tight reservoir in the second member of the Upper Triassic Xujiahe Formation in the middle part of western Sichuan Depression[D]. Chengdu:Chengdu University of Technology,2015.
[27] 季宗镇,戴俊生,汪必峰. 地应力与构造裂缝参数间的定量关系[J]. 石油学报,2010,31(1):68-72. JI Zongzhen,DAI Junsheng,WANG Bifeng. Quantitative relationship between crustal stress and parameters of tectonic fracture[J]. Acta Petrolei Sinica,2010,31(1):68-72.
[28] 赵建生. 断裂力学及断裂物理[M]. 武汉:华中科技大学出版社,2003. ZHAO Jiansheng. Fracture mechanics and fracture physics[M]. Wuhan:Huazhong University of Science and Technology Press,2003.
[29] REN Qiqiang,JIN Qiang,FENG Jianwei,et al. Simulation of stress fields and quantitative prediction of fractures distribution in upper Ordovician biological limestone formation within Hetianhe field,Tarim Basin,NW China[J]. Journal of Petroleum Science and Engineering,2019,173:1236-1253.
[30] LI Hui,LIN Chengyan,REN Lihua,et al. Quantitative prediction of multi-period tectonic fractures based on integrated geological-geophysical and geomechanics data in deep carbonate reservoirs of Halahatang oilfield in northern Tarim Basin[J]. Marine and Petroleum Geology,2021,134:105377.
[31] 赵万金,周春雷. 基于Contourlet变换的图像增强技术识别裂缝[J]. 岩性油气藏,2017,29(3):103-109. ZHAO Wanjin,ZHOU Chunlei. Application of image enhancement technique to fracture identification based on Contourlet transform[J]. Lithologic Reservoirs,2017,29(3):103-109.
[32] LI Hui,TANG Hongming,QIN Qirong,et al. Characteristics, formation periods and genetic mechanisms of tectonic fractures in the tight gas sandstones reservoir:A case study of Xujiahe Formation in YB area,Sichuan Basin,China[J]. Journal of Petroleum Science and Engineering,2019,178:723-735.
[33] 陈星岳,徐占杰,杜红权,等. 川东北须家河组致密砂岩裂缝储集体识别与控藏作用[J]. 天然气地球科学,2025,36(1):114-126. CHEN Xingyue,XU Zhanjie,DU Hongquan,et al. Identification of fractured reservoir and its effect on hydrocarbon accumulation of the Xujiahe Formation tight sandstone in the Northeast Sichuan Basin[J]. Natural Gas Geoscience,2025,36(1):114-126.
[34] 杜江民,龙鹏宇,秦莹民,等. 柴达木盆地英西地区渐新统E32储层特征及成藏模式[J]. 岩性油气藏,2021,33(5):1-10. DU Jiangmin,LONG Pengyu,QIN Yingmin,et al. Characteristics and accumulation model of Oligocene E32 reservoir in Yingxi area,Qaidam Basin[J]. Lithologic Reservoirs,2021,33(5):1-10.
[1] 肖文华, 杨军, 严宝年, 王建国, 李少勇, 马淇琳, 李宗霖, 薛欢召. 鄂尔多斯盆地环庆地区三叠系长8致密砂岩储层特征及成藏主控因素[J]. 岩性油气藏, 2025, 37(3): 23-32.
[2] 邓高山, 董雪梅, 余海涛, 张洁, 岳喜伟, 任军民, 姜涛. 准噶尔盆地沙湾凹陷三叠系百口泉组油气成藏条件及勘探潜力[J]. 岩性油气藏, 2025, 37(3): 59-72.
[3] 李想, 付磊, 魏璞, 李俊飞, 徐港, 曹倩倩, 钟杨, 王振鹏. 沉积古地貌恢复及古地貌对沉积体系的控制作用——以准噶尔盆地石西地区三叠系百口泉组为例[J]. 岩性油气藏, 2025, 37(2): 38-48.
[4] 刘勇, 刘永旸, 赵圣贤, 尹美璇, 李博, 陈雷, 吴帅材, 谢圣阳. 泸州—渝西地区志留系龙马溪组沉积期古地貌特征及控储作用[J]. 岩性油气藏, 2025, 37(2): 49-59.
[5] 梁锋, 曹哲. 鄂尔多斯盆地华池地区三叠系长7页岩油储层特征、形成环境及富集模式[J]. 岩性油气藏, 2025, 37(1): 24-40.
[6] 何岩, 许维娜, 党思思, 牟蕾, 林少玲, 雷章树. 准噶尔盆地陆梁地区侏罗系西山窑组钙质夹层成因及勘探意义[J]. 岩性油气藏, 2025, 37(1): 90-101.
[7] 杨杰, 张文萍, 丁朝龙, 石存英, 马云海. 川中地区三叠系须家河组二段致密气储层特征及主控因素[J]. 岩性油气藏, 2025, 37(1): 137-148.
[8] 卫欢, 单长安, 朱松柏, 黄钟新, 刘汉广, 朱兵, 吴长涛. 库车坳陷克深地区白垩系巴什基奇克组致密砂岩裂缝发育特征及地质意义[J]. 岩性油气藏, 2025, 37(1): 149-160.
[9] 吴佳, 赵卫卫, 刘钰晨, 李慧, 肖颖, 杨迪, 王嘉楠. 鄂尔多斯盆地延安地区三叠系长7页岩源储配置及油气富集规律[J]. 岩性油气藏, 2025, 37(1): 170-181.
[10] 陈肖, 缪云, 李伟, 谢明英, 施浩, 王伟峰. 海上边水驱砂岩油田合理油水井数比计算方法[J]. 岩性油气藏, 2025, 37(1): 194-200.
[11] 赵军, 李勇, 文晓峰, 徐文远, 焦世祥. 基于斑马算法优化支持向量回归机模型预测页岩地层压力[J]. 岩性油气藏, 2024, 36(6): 12-22.
[12] 崔传智, 李静, 吴忠维. 扩散吸附作用下CO2非混相驱微观渗流特征模拟[J]. 岩性油气藏, 2024, 36(6): 181-188.
[13] 陈康, 戴隽成, 魏玮, 刘伟方, 闫媛媛, 郗诚, 吕龑, 杨广广. 致密砂岩AVO属性的贝叶斯岩相划分方法——以川中地区侏罗系沙溪庙组沙一段为例[J]. 岩性油气藏, 2024, 36(5): 111-121.
[14] 王子昕, 柳广弟, 袁光杰, 杨恒林, 付利, 王元, 陈刚, 张恒. 鄂尔多斯盆地庆城地区三叠系长7段烃源岩特征及控藏作用[J]. 岩性油气藏, 2024, 36(5): 133-144.
[15] 尹虎, 屈红军, 孙晓晗, 杨博, 张磊岗, 朱荣幸. 鄂尔多斯盆地东南部三叠系长7油层组深水沉积特征及演化规律[J]. 岩性油气藏, 2024, 36(5): 145-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!