岩性油气藏 ›› 2025, Vol. 37 ›› Issue (5): 193–200.doi: 10.12108/yxyqc.20250518

• 石油工程与油气田开发 • 上一篇    

考虑高速非达西的多条大孔道注水直井试井解释模型

崔永正1,2, 周文胜1,2, 未志杰1,2, 姜瑞忠3   

  1. 1. 海洋油气高效开发全国重点实验室, 北京 102209;
    2. 中海油研究总院有限责任公司, 北京 102209;
    3. 中国石油大学(华东)石油工程学院, 山东 青岛 266580
  • 收稿日期:2024-07-09 修回日期:2024-10-21 发布日期:2025-09-06
  • 第一作者:崔永正(1992—),男,博士,工程师,主要从事油藏数值模拟及试井方面的研究工作。地址:(102209)北京市昌平区未来科学城中海油科技园区。Email:cuiyzheng@126.com。
  • 基金资助:
    国家自然科学基金面上项目“基于非均衡理论的海上稠油化学驱大幅提高采收率关键问题研究”(编号:52074347)、中国海洋石油集团公司“海洋油气高效开发重点实室主任基金(2024)”(编号:KJQZ-2024-2101)与中国海洋石油有限公司十四五重大课题“海上双高—双特高水驱油田提高采收率油藏关键技术”(编号:KJGG2021-0501)联合资助。

Well testing interpretation model of vertical injection well with multi flow channels considering high-velocity non-Darcy flow

CUI Yongzheng1,2, ZHOU Wensheng1,2, WEI Zhijie1,2, JIANG Ruizhong3   

  1. 1. State Key Laboratory of Offshore Oil and Gas Exploitation, Beijing 102209, China;
    2. CNOOC Research Institute Co., Ltd., Beijing, 102209, China;
    3. School of petroleum engineering, China University of Petroleum(East China), Qingdao, 266580, Shandong, China
  • Received:2024-07-09 Revised:2024-10-21 Published:2025-09-06

摘要: 针对海上疏松砂岩注水井周围经长期冲刷易发育大孔道的问题,通过引入Barree-Conway模型对大孔道内高速非达西渗流进行描述,采用迭代方法对高速非达西渗流导致的强非线性问题进行处理,并结合线源、Laplace变换及数值离散方法构建考虑高速非达西渗流的发育多条大孔道的注水直井试井解释模型,并对典型压力动态曲线及相关参数的影响展开分析。研究结果表明:①考虑高速非达西渗流的发育多条大孔道的注水直井不稳定试井半解析模型可以有效处理多条大孔道发育及大孔道内的高速非达西渗流,且计算结果更加可靠。②发育多条大孔道的注水直井的典型压力曲线可划分为井储、过渡段、双线性流、线性流、大孔道干扰及径向流等6个流动阶段。考虑高速非达西渗流后,早期压力及压力导数曲线均明显向上移动,近井大孔道内导流能力出现明显下降。随着大孔道数量的增多,压力及压力导数曲线明显下移,同时大孔道内高速非达西渗流的影响程度减小。③将此模型应用于渤海油田注水井参数解释,可实现大孔道的定量表征。

关键词: 注水直井, 大孔道, 高速非达西渗流, 线源, Laplace变换, 数值离散方法, 试井解释模型, 迭代求解

Abstract: To focus on the issue of high permeability flow channels developed upon long-term strong water erosion in offshore unconsolidated sandstone,the Barree-Conway model was employed to describe the highvelocity non-Darcy flow within flow channels. An iterative method was adopted for the strong nonlinearity caused by high-velocity non-Darcy flow. Then a pressure transient model of vertical injection well with multi flow channels considering high-velocity non-Darcy flow was obtained through line source,Laplace transformation and numerical discretization methods,and the typical pressure dynamic curves and related parameters were analyzed.The results show that:(1)The semi-analytical model for unstable well-testing in vertical injection well with multi flow channels considering high-velocity non-Darcy flow can effectively address both the development of multi high permeability flow channels and high-velocity non-Darcy flow within these channels,and the calculation results are more reliable.(2)The typical pressure curves of vertical injection well with multi flow channels can be divided into six flow stages:wellbore storage,transition flow,bilinear flow,linear flow,flow channel interference,and radial flow. When high-velocity non-Darcy flow is considered,both the early stage pressure and pressure derivative curves move up significantly,and the flow conductivity capacity of the multi flow channels near wellbore shift down significantly. As the numbers of flow channels increase,the pressure and pressure derivative curves decrease significantly,while the influence of high-velocity non-Darcy flow within the flow channels diminishes.(3)The model was successfully applied to the parameters interpretation of an injection well in Bohai Oilfield,then the quantitative characterization of flow channels can be achieved.

Key words: vertical injection well, large pore channel, high-velocity non-Darcy flow, line source, Laplace transformation, numerical discretization methods, well testing interpretation model, iterative method

中图分类号: 

  • TE312
[1] 孙福街. 中国海上油田高效开发与提高采收率技术现状及展望[J]. 中国海上油气,2023,35(5):91-99. SUN Fujie. Status and prospects of efficient development and EOR technologies in China offshore oilfields[J]. China Offshore Oil and Gas,2023,35(5):91-99.
[2] 刘仁静,陆文明. 断块油藏注采耦合提高采收率机理及矿场实践[J]. 岩性油气藏,2024,36(3):180-188. LIU Renjing,LU Wenming. Mechanism and field practice of enhanced oil recovery by injection-production coupling in fault block reservoirs[J]. Lithologic Reservoirs,2024,36(3):180-188.
[3] 黄斌,许瑞,傅程,等. 注采井间优势通道的多层次模糊识别方法[J]. 岩性油气藏,2018,30(4):105-112. HUANG Bin,XU Rui,FU Cheng,et al. Multi-level fuzzy identification method for interwell thief zone[J]. Lithologic Reservoirs,2018,30(4):105-112.
[4] 吴忠维,崔传智,杨勇,等. 高含水期大孔道渗流特征及定量描述方法[J]. 石油与天然气地质,2018,39(4):839-844. WU Zhongwei,CUI Chuanzhi,YANG Yong,et al. Seepage characteristics and quantitative description of large pore pathways at high water cut stage[J]. Oil & Gas Geology,2018,39(4):839-844.
[5] 张运来,廖新武,胡勇,等.海上稠油油田高含水期开发模式研究[J]. 岩性油气藏,2018,30(4):120-126. ZHANG Yunlai,LIAO Xinwu,HU Yong,et al. Development models for offshore heavy oil field in high water cut stage[J]. Lithologic Reservoirs,2018,30(4):120-126.
[6] 赵艳红,姜汉桥,李洪奇. 注水开发油田注水通道状态辨识及预测方法[J]. 石油学报,2021,42(8):1081-1090. ZHAO Yanhong,JIANG Hanqiao,LI Hongqi. Identification and predictions of water injectivity for water injection channels in water injection development oilfield[J]. Acta Petrolei Sinica,2021,42(8):1081-1090.
[7] 李传亮,王凤兰,杜庆龙,等. 砂岩油藏特高含水期的水驱特征[J]. 岩性油气藏,2021,33(5):163-171. LI Chuanliang,WANG Fenglan,DU Qinglong,et al. Water displacement rules of sandstone reservoirs at extra-high water-cut stage[J]. Lithologic Reservoirs,2021,33(5):163-171.
[8] CLARK K K. Transient pressure testing of fractured water injection wells[J]. Journal of Petroleum Technology,1968,20(6):639-643.
[9] 钟会影,沈文霞,藏秋缘,等. 基于PEBI网格的考虑诱导裂缝的聚合物驱压力动态研究[J]. 岩性油气藏,2022,34(3):164-170. ZHONG Huiying,SHEN Wenxia,ZANG Qiuyuan,et al. Pressure transient of polymer flooding considering induced fractures based on PEBI grid[J]. Lithologic Reservoirs,2022,34(3):164-170.
[10] ALAWAMI R L,TELLO GOMEZ A H,MORENO SIERRA F G,et al. Channel characterization in sandstone formation using pressure transient analysis:A practical overview to define geological attributes[R]. Dhahran,International Petroleum Technology Conference,2024.
[11] 史有刚,曾庆辉,周晓俊. 大孔道试井理论解释模型[J]. 石油钻采工艺,2003,25(3):48-50. SHI Yougang,ZENG Qinghui,ZHOU Xiaojun. Interpreting model of larger pore well testing theory[J]. Oil Drilling &Production Technology,2003,25(3):48-50.
[12] 李成勇,程华,蔡忠明,等. 考虑不对称优势渗流通道试井解释数学模型[J]. 大庆石油地质与开发,2011,30(2):129-132. LI Chengyong,CHENG Hua,CAI Zhongming,et al. Well test interpretation mathematical model considering asymmetric preferential seepage channel[J]. Petroleum Geology & Oilfield Development in Daqing,2011,30(2):129-132.
[13] FENG Qihong,WANG Sen,ZHANG Wei,et al. Characterization of high-permeability streak in mature waterflooding reservoirs using pressure transient analysis[J]. Journal of Petroleum Science and Engineering,2013,110:55-65.
[14] 谷建伟,樊兆亚,姜汉桥,等. 一种新的注入井大孔道解释模型[J]. 大庆石油地质与开发,2013,32(2):49-54. GU Jianwei,FAN Zhaoya,JIANG Hanqiao,et al. Well test interpreting method of the polymer-flooded high capacity channel oil reservoir[J]. Petroleum Geology & Oilfield Development in Daqing,2013,32(2):49-54.
[15] 曾杨,康晓东,谢晓庆,等. 聚合物驱大孔道油藏试井解释方法[J]. 大庆石油地质与开发,2018,37(2):130-134. ZENG Yang,KANG Xiaodong,XIE Xiaoqing,et al. Well test interpreting method of the polymer flooded high capacity channel oil reservoir[J]. Petroleum Geology & Oilfield Development in Daqing,2018,37(2):130-134.
[16] WANG Yang,CHENG Shiqing,FENG Naichao,et al. Semianalytical modeling for water injection well in tight reservoir considering the variation of waterflood-induced fracture properties:Case studies in Changqing Oilfield,China[J]. Journal of Petroleum Science and Engineering,2017,159:740-753.
[17] 姜瑞忠,沈泽阳,崔永正,等. 双重介质低渗油藏斜井压力动态特征分析[J]. 岩性油气藏,2018,30(6):131-137. JIANG Ruizhong,SHEN Zeyang,CUI Yongzheng,et al. Dynamical characteristics of inclined well in dual medium low permeability reservoir[J]. Lithologic Reservoirs,2018,30(6):131-137
[18] VAN EVERDINGEN A F,HURST W. The application of the laplace transformation to flow problems in reservoirs[J]. Journal of Petroleum Technology,1949,1(12):305-324.
[19] 郭晶晶,徐耀宏,杜佳,等. 复合致密油藏变导流能力压裂井不稳定压力动态分析[J]. 水动力学研究与进展A辑,2023, 38(4):612-620. GUO Jingjing,XU Yaohong,DU Jia,et al. Pressure transient analysis for fractured wells with variable conductivity in composite tight oil reservoirs[J]. Chinese Journal Of Hydrodynamics,2023,38(4):612-620.
[20] BARREE R D,CONWAY M W. Beyond beta factors:A complete model for Darcy,Forchheimer,and trans-Forchheimer flow in porous media[R]. Houston,SPE Annual Technical Conference and Exhibition,2004.
[21] BARREE R D,CONWAY M W. Multiphase non-Darcy flow in proppant packs[R]. Anaheim,SPE Annual Technical Conference and Exhibition,2007.
[22] 崔永正,姜瑞忠,郜益华,等. 空间变导流能力压裂井CO2驱试井分析[J]. 岩性油气藏,2020,32(4):172-180. CUI Yongzheng,JIANG Ruizhong,GAO Yihua,et al. Pressure transient analysis of hydraulic fractured vertical wells with variable conductivity for CO2 flooding[J]. Lithologic Reservoirs, 2020,32(4):172-180.
[23] 徐有杰,刘启国,王瑞,等. 复合油藏压裂水平井复杂裂缝分布压力动态特征[J]. 岩性油气藏,2019,31(5):161-168. XU Youjie,LIU Qiguo,WANG Rui,et al. Pressure transient of fractured horizontal well with complex fracture distribution in composite reservoir[J]. Lithologic Reservoirs,2019,31(5):161-168.
[24] POE B D,SHAH P C,ELBEL J L. Pressure transient behavior of a finite-conductivity fractured well with spatially varying fracture properties[R]. Washington D.C.,SPE Annual Technical Conference and Exhibition,1992.
[25] GUPPY K H,CINCO-LEY H,RAMEY H J,et al. Non-Darcy flow in wells with finite-conductivity vertical fractures[J]. SPE Journal,1982,22:681-698.
[1] 聂仁仕, 张雨晴, 周杰, 袁安意, 蔡明金, 张焘, 卢聪, 曾凡辉. 考虑应力敏感及变井筒储集效应的水平井油气两相流试井模型[J]. 岩性油气藏, 2025, 37(4): 184-191.
[2] 徐有杰, 任宗孝, 向祖平, 樊晓辉, 于梦男. 非均质储层致密气藏压裂井复杂缝多井干扰数值试井模型[J]. 岩性油气藏, 2025, 37(3): 194-200.
[3] 秦正山, 何勇明, 丁洋洋, 李柏宏, 孙双双. 边水气藏水侵动态分析方法及水侵主控因素[J]. 岩性油气藏, 2024, 36(4): 178-188.
[4] 刘仁静, 陆文明. 断块油藏注采耦合提高采收率机理及矿场实践[J]. 岩性油气藏, 2024, 36(3): 180-188.
[5] 余燕, 周琳琅, 甘笑非, 胡燕, 淦文杰, 邓庄. 二次压力梯度三孔渗流模型及非线性渗流特征[J]. 岩性油气藏, 2020, 32(5): 143-150.
[6] 贾红兵, 赵辉, 包志晶, 赵光杰, 毛伟, 李亚光. 水驱开发效果评价新方法及其矿场应用[J]. 岩性油气藏, 2019, 31(5): 101-107.
[7] 陶帅, 郝永卯, 周杰, 曹小朋, 黎晓舟. 透镜体低渗透岩性油藏合理井网井距研究[J]. 岩性油气藏, 2018, 30(5): 116-123.
[8] 田亮, 李佳玲, 焦保雷. 塔河油田12区奥陶系油藏溶洞充填机理及挖潜方向[J]. 岩性油气藏, 2018, 30(3): 52-60.
[9] 张烈辉, 单保超, 赵玉龙, 郭晶晶, 唐洪明. 页岩气藏表观渗透率和综合渗流模型建立[J]. 岩性油气藏, 2017, 29(6): 108-118.
[10] 尹帅, 谢润成, 丁文龙, 单钰铭, 周文. 常规及非常规储层岩石分形特征对渗透率的影响[J]. 岩性油气藏, 2017, 29(4): 81-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!