岩性油气藏 ›› 2017, Vol. 29 ›› Issue (4): 81–90.doi: 10.3969/j.issn.1673-8926.2017.04.010

• 油气地质 • 上一篇    下一篇

常规及非常规储层岩石分形特征对渗透率的影响

尹帅1, 谢润成2,3, 丁文龙4, 单钰铭2,3, 周文2,3   

  1. 1. 西安石油大学 地球科学与工程学院, 西安 710065;
    2. 油气藏地质及开发工程国家重点实验室, 成都 610059;
    3. 成都理工大学 能源学院, 成都 610059;
    4. 中国地质大学 能源学院, 北京 100083
  • 收稿日期:2016-04-05 修回日期:2016-05-25 出版日期:2017-07-21 发布日期:2017-07-21
  • 通讯作者: 谢润成(1979-),男,教授,主要从事油气藏工程地质评价方面的教学与研究工作。Email:xieruncheng06@cdut.cn E-mail:xieruncheng06@cdut.cn
  • 作者简介:尹帅(1989-),男,博士,讲师,主要从事石油构造及裂缝评价方面的研究工作。地址:(100083)北京市海淀区学院路29号中国地质大学(北京)。Email:speedysys@163.com
  • 基金资助:
    国家自然科学基金项目“硬脆/塑性泥页岩微裂缝产生的岩石物理学机制基础研究”(编号:41572130)、“渤海湾盆地济阳坳陷古近系陆相富有机质页岩裂缝研究”(编号:41372139)及“中国南方下古生界海相富有机质页岩裂缝发育程度与主控因素定量关系研究”(编号:41072098)联合资助

Influences of fractal characteristics of reservoir rocks on permeability

YIN Shuai1, XIE Runcheng2,3, DING Wenlong4, SHAN Yuming2,3, ZHOU Wen2,3   

  1. 1. School of Earth Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China;
    2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploration, Chengdu Universtiy of Technology, Chengdu 610059, China;
    3. College of Energy, Chengdu University of Technology, Chengdu 610059, China;
    4. School of Energy Resources, China University of Geosciences, Beijing 100083, China
  • Received:2016-04-05 Revised:2016-05-25 Online:2017-07-21 Published:2017-07-21

摘要: 为了刻画不同类型储层孔隙结构及其对渗透率的影响,以压汞、核磁共振及N2吸附实验为基础,基于分形理论对砂岩、煤岩及页岩的分形特征进行了分析,建立了砂岩、煤岩、页岩的等效毛管迂曲度模型,探讨了常规及非常规储层岩石分形特征参数对渗透率的影响。结果表明:砂岩、煤岩、页岩的分形维数主要为2.6~3.0,毛管平均迂曲度分形维数主要为1.1~2.3,分形维数大小与岩石渗透率具有负相关性;影响岩石渗透率的微观孔隙结构因素包括岩石的非均质性、孔喉分布、孔隙表面粗糙程度及毛管迂曲度等,其中毛管迂曲度对岩石渗透率的影响最大;煤岩的等效毛管迂曲度较小,砂岩中等,页岩较大。最后,利用分形理论模型对39组岩石样品渗透率进行预测,认为砂岩和煤岩的渗透率预测效果均较好,但对于具有强非均质性的页岩来说,其渗透率已经达到nD级,虽然预测结果具有一定的吻合度,但预测精度仍有待进一步提高。此次研究对深入探讨不同类型储层岩石微观渗流机理具有一定的参考价值。

关键词: 边界断裂, 构造特征, 油气成藏, 赛汉塔拉凹陷, 二连盆地

Abstract: In order to characterize the pore structure of different types of reservoirs and cognize its influence on rock permeability,based on the mercury intrusion,nuclear magnetic resonance(NMR)and N2 adsorption experiments,the fractal characteristics of sandstone,coal and shale were compared and analyzed by using the fractal theory, the equivalent capillary tortuosity models were established, and the influences of fractal characteristic parameters of conventional and unconventional reservoir rocks on permeability were discussed. The results show that the fractal dimension(Df)of the three kinds of rocks is in the range of 2.6-3.0,the capillary average tortuosity fractal dimension(DT)is in the range of 1.1-2.3,and the fractal dimension is negatively correlated with rock permeability. The microscopic pore structure factors that influence the rock permeability include heterogeneity of the rock,pore throat size distribution,pore surface roughness and capillary tortuosity,among which the capillary tortuosity has the biggest influence on rock permeability. The equivalent capillary tortuosity of coal,sandstone and shale is relatively small, medium and big, respectively. Finally, the theory of fractal model was used to forecast the permeability of 39 sets of rock samples,the prediction results of sandstone and coal are good. But for shale with strong heterogeneity, its permeability reached nD level. Although the prediction results have a certain degree of coincidence,the prediction accuracy still needs to be further improved. The knowledge obtained in this paper has important reference value in in-depth knowing microscopic percolation mechanism of different kinds of reservoirs.

Key words: boundary fault, structural characteristics, hydrocarbon accumulation, Saihantala Sag, Erlian Basin

中图分类号: 

  • TE312
[1] 钟业勋, 胡宝清, 乔俊军.数学在地图学中的应用.桂林理工大学学报, 2010, 30(1):93-98. ZHONG Y X, HU B Q, QIAO J J. Mathematical application in cartography. Journal of Guilin University of Technology, 2010, 30(1):93-98.
[2] 陈更新, 刘应如, 郭宁, 等.铸体薄片的分形表征——以柴达木盆地昆北新区为例.岩性油气藏, 2016, 28(1):72-76. CHEN G X, LIU Y R, GUO N, et al. Fractal characterization of casting thin sections:a case study from Kunbei area in Qaidam Basin. Lithologic Reservoirs, 2016, 28(1):72-76.
[3] 孙岩, 琚宜文, 陆现彩, 等. 从纳米层次重新认识变形的地质体.矿物岩石地球化学通报, 2016, 35(1):52-55. SUN Y, JU Y W, LU X C, et al. To re-recognize deformable geological bodies on the nano-level. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(1):52-55.
[4] 王志伟, 卢双舫, 王民, 等.湖湘、海相泥页岩孔隙分形特征对比.岩性油气藏, 2016, 28(1):88-93. WANG Z W, LU S F, WANG M, et al. Fractal characteristics of lacustrine shale and marine shale. Lithologic Reservoirs, 2016, 28(1):88-93.
[5] 张宪国, 张涛, 林承焰. 基于孔隙分形特征的低渗透储层孔隙结构评价.岩性油气藏, 2013, 25(6):40-45. ZHANG X G, ZHANG T, LIN C Y. Pore structure evaluation of low permeability reservoir based on pore fractal features. Lithologic Reservoirs, 2013, 25(6):40-45.
[6] 姜文, 唐书恒, 张静平, 等.基于压汞分形的高变质石煤孔渗特征分析.煤田地质与勘探, 2013, 41(4):9-13. JIANG W, TANG S H, ZHANG J P, et al. Characteristics of pore permeability of highly metamorphic bone coal. Coal Geology and Exploration, 2013, 41(4):9-13.
[7] 赖锦, 王贵文, 郑懿琼, 等.低渗透碎屑岩储层孔隙结构分形维数计算方法.东北石油大学学报, 2013, 37(1):1-7. LAI J, WANG G W, ZHENG Y Q, et al. Calculation method of low permeable clastic rock reservoir pore structure fractal dimension. Journal of Northeast Petroleum University, 2013, 37(1):1-7.
[8] YAO Y B, LIU D M, TANG D Z, et al. Fractal characterization of adsorption-pores of coals from North China:a investigation on CH4 adsorption capacity of coals. International Journal of Coal Geology, 2008, 73:27-42.
[9] 王刚, 黄娜, 蒋宇静, 等. 虑分形特征的节理面渗流计算模型. 岩石力学与工程学报, 2014, 33(增刊2):3397-3405.WANG G, HUANG N, JIANG Y J, et al. Seepage calculation model for rough joint surface considering fractal characteristics. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(Suppl 2):3397-3405.
[10] 杨军, 王潇婷, 龚明辉, 等. 沥青原子力显微镜微观图像的特征分析.石油学报(石油加工), 2015, 31(5):1110-1115. YANG J, WANG X T, GONG M H, et al. Analysis of the microscopic images of asphalt getting from atomic force microscopy. Acta Petrolei Sinica(Petroleum Processing Section), 2015, 31(5):1110-1115.
[11] 陈燕燕, 邹才能, Maria M, 等.页岩微观孔隙演化及分形特征研究. 天然气地球科学, 2015, 26(9):1646-1656. CHEN Y Y, ZOU C N, Maria M, et al. Porosity and fractal characteristics of shale across a maturation gradient. Natural Gas Geoscience, 2015, 26(9):1646-1656.
[12] 赵靖舟, 王芮, 耳闯.鄂尔多斯盆地延长组长7段暗色泥页岩吸附特征及其影响因素.地学前缘, 2016, 23(1):146-153. ZHAO J Z, WANG R, ER C. Adsorption characteristics of Chang 7 shale from the Triassic Yanchang Formation in Ordos Basin, and its controlling factor. Earth Science Frontiers, 2016, 23(1):146-153.
[13] 戴金星, 倪云燕, 黄士鹏, 等.煤成气研究对中国天然气工业发展的重要意义.天然气地球科学, 2014, 25(1):1-17. DAI J X, NI Y Y, HUANG S P, et al. Significant function of coal-derived gas study for natural gas industry development in China. Natural Gas Geoscience, 2014, 25(1):1-17.
[14] ZHANG Z Y, Weller A. Fractal dimension of pore-space geometry of an Eocene sandstone formation. Geophysics, 2014, 79(6):377-387.
[15] YANG F, NING F Z, LIU H Q. Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China. Fuel, 2014, 115:378-384.
[16] SU X B, LIN X Y, ZHAO M J, et al. The Upper Paleozoic coalbed methane system in the Qinshui Basin, China. AAPG Bulletin, 2005, 89(1):81-100.
[17] TIAB D, DONALDSON E C. Petrophysics:theory and practice of measuring reservoir rock and fluid transport properties. Elsevier, 2004.
[18] 付常青, 朱炎铭, 陈尚斌. 浙西荷塘组页岩孔隙结构及分形特征研究. 中国矿业大学学报, 2016, 45(1):77-86. FU C Q, ZHU Y M, CHEN S B. Pore structure and fractal features of Hetang Formation shale in western Zhejiang. Journal of China University of Mining and Technology, 2016, 45(1):77-86.
[19] URSULA I V, JORGE O P. Artificial neural networks applied to estimate permeability, porosity and intrinsic attenuation using seismic attributes and well-log data. Journal of Applied Geophysics, 2014, 107:45-54.
[20] YU B M, LI J H. A geometry model for tortuosity of flow path in porous media. Chinese Physics Letters, 2004, 21(8):1569-1571.
[21] XU P, YU B M. Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry. Chinese Physics Letters, 2008, 31(1):74-81.
[22] WU J S, YU B M. A fractal resistance model for flow through porous media. International Journal of Heat and Mass Transfer, 2007, 50(19):3925-3932.
[23] 于炳松. 页岩气储层孔隙分类与表征. 地学前缘, 2013, 20(4):211-220. YU B S. Classification and characterization of gas shale pore system. Earth Science Frontiers, 2013, 20(4):211-220.
[24] CARMAN P C. Fluid flow through granular beds. Transactions of the Institution of Chemical Engineers, 1937, 15:150-156.
[25] HAN T, BEST A T, MACGREGOR L M, et al. Joint elastic electrical effective medium models of reservoir sandstones. Geophysical Prospecting, 2011, 59:777-786.
[26] WYLLIE M R J, SPANGLER M B.Application of electrical resistivity measurements to problem of fluid flow in porous media. AAPG Bulletin, 1952, 36(2):359-403.
[27] 尹帅, 丁文龙, 孙雅雄, 等.泥页岩单轴抗压破裂特征及UCS影响因素. 地学前缘, 2016, 23(2):75-95. YIN S, DING W L, SUN Y X, et al. Shale uniaxial compressive failure property and the affecting factors of UCS. Earth Science Frontiers, 2016, 23(2):75-95.
[28] WARUNTORN K, ROMAN V, HANS R W, et al. Linking preferred orientations to elastic anisotropy in Muderong shale, Australia. Geophysics, 2015, 80(1):9-19.
[29] XIAO L, MAO Z Q, JIN Y. Tight gas sandstone reservoir evaluation from nuclear magnetic resonance(NMR)logs:case studies. Arab Journal Science Engineering, 2015, 40:1223-1237.
[30] 白瑞婷, 李治平, 南郡祥, 等.考虑启动压力梯度的致密砂岩储层渗透率分形模型. 天然气地球科学, 2016, 27(1):142-148. BAI R T, LI Z P, NAN J X, et al. The fractal permeability model in tight sand reservoir accounts for start-up gradient. Natural Gas Geoscience, 2016, 27(1):142-148.
[31] 杨峰, 宁正福, 胡昌蓬, 等.页岩储层微观孔隙结构特征.石油学报, 2013, 34(2):301-311. YANG F, NING Z F, HU C P, et al. Characterization of microscopic pore structures in shale reservoirs. Acta Petrolei Sinica, 2013, 34(2):301-311.
[1] 姚海鹏, 于东方, 李玲, 林海涛. 内蒙古地区典型煤储层吸附特征[J]. 岩性油气藏, 2021, 33(2): 1-8.
[2] 卢恩俊, 柳少波, 于志超, 鲁雪松, 成定树. 柴达木盆地英雄岭南带断裂活动特征及其控藏作用[J]. 岩性油气藏, 2021, 33(1): 161-174.
[3] 宁从前, 周明顺, 成捷, 苏芮, 郝鹏, 王敏, 潘景丽. 二维核磁共振测井在砂砾岩储层流体识别中的应用[J]. 岩性油气藏, 2021, 33(1): 267-274.
[4] 黄杰, 杜玉洪, 王红梅, 郭佳, 单晓琨, 苗雪, 钟新宇, 朱玉双. 特低渗储层微观孔隙结构与可动流体赋存特征——以二连盆地阿尔凹陷腾一下段储层为例[J]. 岩性油气藏, 2020, 32(5): 93-101.
[5] 朱珍君, 黄光明, 邱津, 刘康宁, 李琦, 胡俊杰. 哈萨克斯坦斋桑盆地构造特征及其对油气成藏的影响[J]. 岩性油气藏, 2020, 32(4): 23-35.
[6] 山鑫杰, 王飞宇, 刘念, 冯伟平, 江涛, 杜喜, 程志强, 李思嘉, 李月. 二连盆地呼仁布其凹陷南洼下白垩统烃源岩分布特征与油源分析[J]. 岩性油气藏, 2020, 32(3): 104-114.
[7] 郑庆华, 尤继元. 黄骅坳陷王官屯构造带白垩系火山岩油气成藏特征[J]. 岩性油气藏, 2019, 31(5): 44-51.
[8] 唐建云, 张刚, 史政, 章星, 陈玉宝. 鄂尔多斯盆地丰富川地区延长组流体包裹体特征及油气成藏期次[J]. 岩性油气藏, 2019, 31(3): 20-26.
[9] 洪亮, 陈彬滔, 刘雄志, 惠学智, 房乃珍, 苏玉平. Muglad盆地Kaikang槽西斜坡沉积演化及其油气地质意义[J]. 岩性油气藏, 2019, 31(2): 8-15.
[10] 张以明, 陈树光, 崔永谦, 田建章, 王鑫, 王孟华. 二连盆地乌兰花凹陷安山岩岩相展布及储层预测[J]. 岩性油气藏, 2018, 30(6): 1-9.
[11] 白晓寅, 韩长春, 贺永红, 任来义, 马芳侠, 陈治军, 刘护创. 银额盆地哈日凹陷火成岩发育特征及其成藏作用[J]. 岩性油气藏, 2018, 30(6): 18-26.
[12] 王建强. “鄂尔多斯盆地南缘构造特征及演化学术研讨会”在西安成功举办[J]. 岩性油气藏, 2018, 30(2): 161-162.
[13] 魏巍, 朱筱敏, 朱世发, 何明薇, 吴健平, 王名巍. 阿南凹陷腾格尔组凝灰质混积岩岩相及储集空间特征[J]. 岩性油气藏, 2017, 29(2): 68-76.
[14] 赵贤正, 王权, 淡伟宁, 王文英, 乔晓霞, 任春玲. 二连盆地白垩系地层岩性油藏的勘探发现及前景[J]. 岩性油气藏, 2017, 29(2): 1-9.
[15] 肖阳, 张少华, 魏岩, 杨明慧, 陈玉婷, 潘娟. 二连盆地赛汉塔拉凹陷边界断裂构造特征及其控藏作用[J]. 岩性油气藏, 2017, 29(2): 44-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .