岩性油气藏 ›› 2021, Vol. 33 ›› Issue (2): 1–8.doi: 10.12108/yxyqc.20210201

• 油气地质 •    下一篇

内蒙古地区典型煤储层吸附特征

姚海鹏1,2,3,4,5, 于东方1,2,5, 李玲1,2,5, 林海涛1,2,5   

  1. 1. 内蒙古自治区煤田地质局, 呼和浩特 010000;
    2. 内蒙古自治区非常规天然气工程技术研究中心, 呼和浩特 010000;
    3. 中国矿业大学 煤层气资源与成藏过程教育部重点实验室, 江苏 徐州 221116;
    4. 中国矿业大学 资源与地球科学学院, 江苏 徐州 221116;
    5. 内蒙古煤勘非常规能源有限责任公司, 呼和浩特 010000
  • 收稿日期:2020-01-28 修回日期:2020-09-28 出版日期:2021-04-01 发布日期:2021-03-31
  • 第一作者:姚海鹏(1982—),男,博士,教授级高级工程师,主要从事非常规天然气勘查开发方面的研究工作。地址:(010000)内蒙古呼和浩特市赛罕区腾飞南路32号煤勘大厦。Email:goldhowk@qq.com
  • 通信作者: 于东方(1988—),男,硕士,工程师,主要从事煤层气勘查开发技术研究工作。Email:1064220843@qq.com。
  • 基金资助:
    国家重大专项“大型油气田及煤层气开发”子课题“内蒙古含煤区中低煤阶煤层气规模开发区块优选评价”(编号:2016ZX05041-003002)、内蒙古自治区科技创新引导奖励资金项目“内蒙古自治区牙克石-五九煤田煤系气资源评价体系研究”(编号:KCBJ-2018070)联合资助

Adsorption characteristics of typical coal reservoirs in Inner Mongolia

YAO Haipeng1,2,3,4,5, YU Dongfang1,2,5, LI Ling1,2,5, LIN Haitao1,2,5   

  1. 1. Coalfield Geological Bureau of Inner Mongolia Autonomous Region, Hohhot 010000, China;
    2. Research Center of Unconventional Natural Gas Engineering Technology in Inner Mongolia Autonomous Region, Hohhot 010000, China;
    3. Key Laboratory of Coalbed Methane Resources and Accumulation Process, Ministry of Education, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China;
    4. College of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China;
    5. Inner Mongolia Coal Exploration Unconventional Energy Co., Ltd., Hohhot 010000, China
  • Received:2020-01-28 Revised:2020-09-28 Online:2021-04-01 Published:2021-03-31

摘要: 为研究内蒙古地区不同煤阶的典型煤储层吸附性特征,采集鄂尔多斯盆地北部地区、二连盆地白音华煤田、海拉尔盆地牙克石-五九煤田3个代表性地区的煤样,进行不同温度和压力条件下的平衡水法等温吸附测试。结果表明:①在各自储层温度条件下,牙克石-五九煤田长焰煤吸附能力最强,鄂尔多斯盆地北部高阶煤次之,白音华煤田褐煤吸附能力最小。② 3个煤样吸附性均随温度的升高而下降,且存在一个吸附性影响大的敏感温度,其敏感温度由高到低依次为鄂尔多斯盆地北部、牙克石五九煤田、白音华煤田。③煤化过程中羟基和羧基官能团数量的变化及应力压实作用是煤储层吸附能力差异的主要因素。④敏感温度的差异与煤变质程度、孔隙结构紧密相关。鄂尔多斯盆地北部,煤变质达到贫煤阶段,煤储层为连通性差、纳米级孔隙优势发育型储层,其吸附性敏感温度高;牙克石-五九煤田,煤变质达到长焰煤阶段,煤储层为连通性较好、纳米级优势发育型储层,其吸附性敏感温度中等;白音华煤田,煤未变质,处于褐煤阶段,煤储层为连通性好、纳米级—微米级孔隙均等发育型储层,其吸附性敏感温度低。该研究成果为探索煤储层改造提供了其他的可能性,不再局限于压裂改造的技术手段。

关键词: 煤储层, 吸附性, 等温吸附, 敏感温度, 鄂尔多斯盆地, 二连盆地, 海拉尔盆地

Abstract: In order to study the adsorption characteristics of typical coal reservoirs of different coal ranks in Inner Mongolia,coal samples from three representative areas including the northern areas in Ordos Basin,Baiyinhua coalfield in Erlian Basin group and Yakeshi-Wujiu coalfield in Hailar Basin group were conducted isothermal adsorption tests at different temperatures and pressures. The results show that:(1) Under the reservoir temperature, the adsorption capacity of long flame coal in Yakeshi-Wujiu coalfield is the strongest,followed by high-rank coal in northern Ordos Basin,and the adsorption capacity of lignite in Baiyinhua coalfield is the smallest.(2) The adsorbability of the three coal samples decreased with the increase of temperature,and it decreased rapidly within a certain temperature range called sensitive temperature. The sensitive temperature of coal reservoirs in northern Ordos Basin is the highest,followed by Yankeshi-Wujiu coalfield and Baiyinhua coalfield.(3) The variation of the number of hydroxyl and carboxyl functional groups and the stress compaction are the main factors affecting the adsorption capacity of coal reservoirs.(4) The difference of adsorptive sensitivity temperature of coal reservoir is closely related to coal metamorphism and pore structure. In northern Ordos Basin,the coal metamorphism reaches lean coal stage,and the coal reservoir is with poor connectivity and dominantly developed nano-sized pores,with high adsorption sensitivity temperature. In Yakeshi-Wujiu coalfield,the coal metamorphism reaches long flame coal stage,and the coal reservoir is with good connectivity and dominantly developed nano-sized pores,with medium adsorption sensitivity temperature. In Baiyinhua coalfield,the coal is not metamorphosed and is in lignite stage,and the coal reservoir is with good connectivity and well-developed nano-micron pores, with low adsorption sensitive temperature. The research results provide other possibilities for coal reservoir transformation, makes it no longer limited to fracturing technology.

Key words: coal reservoirs, adsorbability, isothermal adsorption, sensitive temperature, Ordos Basin, Erlian Basin, Hailar Basin

中图分类号: 

  • TE122
[1] 王生维, 段连秀. 煤储层评价原理技术方法及应用. 武汉:中国地质大学出版社, 2012:89-91. WANG S W, DUAN L X. Principles and techniques of coal reservoir evaluation and their application. Wuhan:China University of Geosciences Press, 2012:89-91.
[2] 张群, 杨锡禄.平衡水分条件下煤对甲烷的等温吸附特性研究.煤炭学报, 1999, 24(6):566-569. ZHANG Q, YANG X L. Isothermal adsorption of coals on methane under equilibrium moisture. Journal of China Coal Society, 1999, 24(6):566-569.
[3] 苏现波, 张丽萍, 林晓英. 煤阶对煤的吸附能力的影响.天然气工业, 2005, 25(1):18-20. SU X B, ZHANG L P,LIN X Y. Influence of coal rank on coal adsorption capacity. Natural Gas Industry, 2005, 25(1):18-20.
[4] 田永东, 李宁.煤对甲烷吸附能力的影响因素.西安科技大学学报, 2007, 27(2):247-250. TIAN Y D, LI N. Affecting factors of the coal adsorbing methane capability. Journal of Xi'an University of Science and Technology, 2007, 27(2):247-250.
[5] 姚艳斌, 刘大锰.华北重点矿区煤储层吸附特征及其影响因素.中国矿业大学学报, 2007, 36(3):308-314. YAO Y B, LIU D M. Adsorption characteristics of coal reservoirs in North China and its influencing factors. Journal of China University of Mining & Technology, 2007, 36(3):308-314.
[6] 钟玲文.煤的吸附性能及影响因素.地球科学, 2004, 29(3):327-332. ZHONG L W. Adsorptive capacity of coals and its affecting factors. Earth Science, 2004, 29(3):327-332.
[7] 孟召平, 刘珊珊, 王保玉, 等. 不同煤体结构煤的吸附性能及其孔隙结构特征. 煤炭学报, 2015, 40(8):1866-1869. MENG Z P, LIU S S, WANG B Y, et al. Adsorption capacity and its pore structure of coals with different coal body structure. Journal of China Coal Society, 2015, 40(8):1866-1869.
[8] 张凯, 汤达祯, 陶树, 等.不同变质程度煤吸附能力影响因素研究. 煤炭科学技术, 2017, 45(5):192-196. ZHANG K, TANG D Z, TAO S, et al. Study on influence factors of adsorption capacity of different metamorphic degree coals. Coal Science and Technology, 2017, 45(5):192-196.
[9] 张永强, 韩志雄, 薛海军, 等.西南典型矿区煤等温吸附/解吸影响因素研究. 煤炭工程, 2019, 51(6):18-23. ZHANG Y Q, HAN Z X, XUE H J, et al. Impact factors on gas adsorption and desorption of typical mining area in southwest China. Coal Engineering, 2019, 51(6):18-23.
[10] 伊伟, 熊先钺, 王伟, 等. 鄂尔多斯盆地合阳地区煤层气赋存特征研究. 岩性油气藏, 2015, 27(2):38-45. YI W, XIONG X Y, WANG W, et al. Study on occurrence features of coalbed methane in Heyang area,Ordos Basin. Lithologic Reservoirs, 2015, 27(2):38-45.
[11] 曾社教, 马东民, 王鹏刚. 温度变化对煤层气解吸效果的影响.西安科技大学学报, 2009, 29(4):449-453. ZENG S J, MA D M, WANG P G. Effect of temperature changing on desorption of coal bed methane. Journal of Xi'an University of Science and Technology, 2009, 29(4):449-453.
[12] 降文萍.煤阶对煤吸附能力影响的微观机理研究.中国煤层气, 2009, 6(2):19-22. JIANG W P. Microscopic mechanism study on the influence of coal rank on adsorption capacity. China Coalbed Methane, 2009, 6(2):19-22.
[13] 刘俊刚, 刘大锰, 姚艳斌, 等. 韩城示范区煤层气解吸规律及其地质影响因素. 高校地质学报, 2018, 18(3):490-494. LIU J G, LIU D M, YAO Y B, et al. Desorption and its geological controls of coalbed methane in Hancheng demonstration area. Geological Journal of China Universities, 2018, 18(3):490-494.
[14] 唐书恒, 蔡超, 朱宝存, 等.煤变质程度对煤储层物性的控制作用.天然气工业, 2008, 28(12):30-33. TANG S H, CAI C, ZHU B C, et al. Control effect of coal metamorphic degree on physical properties of coal reservoirs. Natural Gas Industry, 2008, 28(12):30-33.
[15] 赵兴龙, 汤达祯, 许浩, 等.煤变质作用对煤储层孔隙系统发育的影响.煤炭学报, 2010, 35(9):1506-1510. ZHAO X L, TANG D Z, XU H, et al. Effect of coal metamorphic process on pore system of coal reservoirs. Journal Of China Coal Society, 2010, 35(9):1506-1510.
[16] 马东民, 张辉, 王贵荣. 胡家河井田煤层气等压吸附/解吸特征研究. 煤炭科学技术, 2016, 44(4):119-123. MA D M, ZHANG H, WANG G R. Study on isobaric adsorption/desorption features of coalbed methane in Hujiahe coal field. Coal Science and Technology, 2016, 44(4):119-123.
[1] 关蕴文, 苏思羽, 蒲仁海, 王启超, 闫肃杰, 张仲培, 陈硕, 梁东歌. 鄂尔多斯盆地南部旬宜地区古生界天然气成藏条件及主控因素[J]. 岩性油气藏, 2024, 36(6): 77-88.
[2] 肖博雅. 二连盆地阿南凹陷白垩系凝灰岩类储层特征及有利区分布[J]. 岩性油气藏, 2024, 36(6): 135-148.
[3] 孔令峰, 徐加放, 刘丁. 三塘湖盆地侏罗系西山窑组褐煤储层孔隙结构特征及脱水演化规律[J]. 岩性油气藏, 2024, 36(5): 15-24.
[4] 王子昕, 柳广弟, 袁光杰, 杨恒林, 付利, 王元, 陈刚, 张恒. 鄂尔多斯盆地庆城地区三叠系长7段烃源岩特征及控藏作用[J]. 岩性油气藏, 2024, 36(5): 133-144.
[5] 尹虎, 屈红军, 孙晓晗, 杨博, 张磊岗, 朱荣幸. 鄂尔多斯盆地东南部三叠系长7油层组深水沉积特征及演化规律[J]. 岩性油气藏, 2024, 36(5): 145-155.
[6] 牟蜚声, 尹相东, 胡琮, 张海峰, 陈世加, 代林锋, 陆奕帆. 鄂尔多斯盆地陕北地区三叠系长7段致密油分布特征及控制因素[J]. 岩性油气藏, 2024, 36(4): 71-84.
[7] 周洪锋, 吴海红, 杨禹希, 向红英, 高吉宏, 贺昊文, 赵旭. 二连盆地巴音都兰凹陷B51井区白垩系阿四段扇三角洲前缘沉积特征[J]. 岩性油气藏, 2024, 36(4): 85-97.
[8] 田亚, 李军辉, 陈方举, 李跃, 刘华晔, 邹越, 张晓扬. 海拉尔盆地中部断陷带下白垩统南屯组致密储层特征及有利区预测[J]. 岩性油气藏, 2024, 36(4): 136-146.
[9] 段逸飞, 赵卫卫, 杨天祥, 李富康, 李慧, 王嘉楠, 刘钰晨. 鄂尔多斯盆地延安地区二叠系山西组页岩气源储特征及聚集规律[J]. 岩性油气藏, 2024, 36(3): 72-83.
[10] 王宏波, 张雷, 曹茜, 张建伍, 潘星. 鄂尔多斯盆地二叠系盒8段河流扇沉积模式及勘探意义[J]. 岩性油气藏, 2024, 36(3): 117-126.
[11] 曹江骏, 王茜, 王刘伟, 李诚, 石坚, 陈朝兵. 鄂尔多斯盆地合水地区三叠系长7段夹层型页岩油储层特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 158-171.
[12] 李启晖, 任大忠, 甯波, 孙振, 李天, 万慈眩, 杨甫, 张世铭. 鄂尔多斯盆地神木地区侏罗系延安组煤层微观孔隙结构特征[J]. 岩性油气藏, 2024, 36(2): 76-88.
[13] 雷涛, 莫松宇, 李晓慧, 姜楠, 朱朝彬, 王桥, 瞿雪姣, 王佳. 鄂尔多斯盆地大牛地气田二叠系山西组砂体叠置模式及油气开发意义[J]. 岩性油气藏, 2024, 36(2): 147-159.
[14] 翟咏荷, 何登发, 开百泽. 鄂尔多斯盆地及邻区中—晚二叠世构造-沉积环境与原型盆地演化[J]. 岩性油气藏, 2024, 36(1): 32-44.
[15] 龙盛芳, 侯云超, 杨超, 郭懿萱, 张杰, 曾亚丽, 高楠, 李尚洪. 鄂尔多斯盆地西南部庆城地区三叠系长7段—长3段层序地层特征及演化规律[J]. 岩性油气藏, 2024, 36(1): 145-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[2] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[3] 林承焰, 谭丽娟, 于翠玲. 论油气分布的不均一性(Ⅰ)———非均质控油理论的由来[J]. 岩性油气藏, 2007, 19(2): 16 -21 .
[4] 王天琦, 王建功, 梁苏娟, 沙雪梅. 松辽盆地徐家围子地区葡萄花油层精细勘探[J]. 岩性油气藏, 2007, 19(2): 22 -27 .
[5] 王西文,石兰亭,雍学善,杨午阳. 地震波阻抗反演方法研究[J]. 岩性油气藏, 2007, 19(3): 80 -88 .
[6] 何宗斌,倪 静,伍 东,李 勇,刘丽琼,台怀忠. 根据双TE 测井确定含烃饱和度[J]. 岩性油气藏, 2007, 19(3): 89 -92 .
[7] 袁胜学,王 江. 吐哈盆地鄯勒地区浅层气层识别方法研究[J]. 岩性油气藏, 2007, 19(3): 111 -113 .
[8] 陈斐,魏登峰,余小雷,吴少波. 鄂尔多斯盆地盐定地区三叠系延长组长2 油层组沉积相研究[J]. 岩性油气藏, 2010, 22(1): 43 -47 .
[9] 徐云霞,王山山,杨帅. 利用沃尔什变换提高地震资料信噪比[J]. 岩性油气藏, 2009, 21(3): 98 -100 .
[10] 李建明,史玲玲,汪立群,吴光大. 柴西南地区昆北断阶带基岩油藏储层特征分析[J]. 岩性油气藏, 2011, 23(2): 20 -23 .