岩性油气藏 ›› 2021, Vol. 33 ›› Issue (2): 1–8.doi: 10.12108/yxyqc.20210201

• 油气地质 •    下一篇

内蒙古地区典型煤储层吸附特征

姚海鹏1,2,3,4,5, 于东方1,2,5, 李玲1,2,5, 林海涛1,2,5   

  1. 1. 内蒙古自治区煤田地质局, 呼和浩特 010000;
    2. 内蒙古自治区非常规天然气工程技术研究中心, 呼和浩特 010000;
    3. 中国矿业大学 煤层气资源与成藏过程教育部重点实验室, 江苏 徐州 221116;
    4. 中国矿业大学 资源与地球科学学院, 江苏 徐州 221116;
    5. 内蒙古煤勘非常规能源有限责任公司, 呼和浩特 010000
  • 收稿日期:2020-01-28 修回日期:2020-09-28 出版日期:2021-04-01 发布日期:2021-03-31
  • 通讯作者: 于东方(1988—),男,硕士,工程师,主要从事煤层气勘查开发技术研究工作。Email:1064220843@qq.com。 E-mail:1064220843@qq.com
  • 作者简介:姚海鹏(1982—),男,博士,教授级高级工程师,主要从事非常规天然气勘查开发方面的研究工作。地址:(010000)内蒙古呼和浩特市赛罕区腾飞南路32号煤勘大厦。Email:goldhowk@qq.com
  • 基金资助:
    国家重大专项“大型油气田及煤层气开发”子课题“内蒙古含煤区中低煤阶煤层气规模开发区块优选评价”(编号:2016ZX05041-003002)、内蒙古自治区科技创新引导奖励资金项目“内蒙古自治区牙克石-五九煤田煤系气资源评价体系研究”(编号:KCBJ-2018070)联合资助

Adsorption characteristics of typical coal reservoirs in Inner Mongolia

YAO Haipeng1,2,3,4,5, YU Dongfang1,2,5, LI Ling1,2,5, LIN Haitao1,2,5   

  1. 1. Coalfield Geological Bureau of Inner Mongolia Autonomous Region, Hohhot 010000, China;
    2. Research Center of Unconventional Natural Gas Engineering Technology in Inner Mongolia Autonomous Region, Hohhot 010000, China;
    3. Key Laboratory of Coalbed Methane Resources and Accumulation Process, Ministry of Education, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China;
    4. College of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China;
    5. Inner Mongolia Coal Exploration Unconventional Energy Co., Ltd., Hohhot 010000, China
  • Received:2020-01-28 Revised:2020-09-28 Online:2021-04-01 Published:2021-03-31

摘要: 为研究内蒙古地区不同煤阶的典型煤储层吸附性特征,采集鄂尔多斯盆地北部地区、二连盆地白音华煤田、海拉尔盆地牙克石-五九煤田3个代表性地区的煤样,进行不同温度和压力条件下的平衡水法等温吸附测试。结果表明:①在各自储层温度条件下,牙克石-五九煤田长焰煤吸附能力最强,鄂尔多斯盆地北部高阶煤次之,白音华煤田褐煤吸附能力最小。② 3个煤样吸附性均随温度的升高而下降,且存在一个吸附性影响大的敏感温度,其敏感温度由高到低依次为鄂尔多斯盆地北部、牙克石五九煤田、白音华煤田。③煤化过程中羟基和羧基官能团数量的变化及应力压实作用是煤储层吸附能力差异的主要因素。④敏感温度的差异与煤变质程度、孔隙结构紧密相关。鄂尔多斯盆地北部,煤变质达到贫煤阶段,煤储层为连通性差、纳米级孔隙优势发育型储层,其吸附性敏感温度高;牙克石-五九煤田,煤变质达到长焰煤阶段,煤储层为连通性较好、纳米级优势发育型储层,其吸附性敏感温度中等;白音华煤田,煤未变质,处于褐煤阶段,煤储层为连通性好、纳米级—微米级孔隙均等发育型储层,其吸附性敏感温度低。该研究成果为探索煤储层改造提供了其他的可能性,不再局限于压裂改造的技术手段。

关键词: 煤储层, 吸附性, 等温吸附, 敏感温度, 鄂尔多斯盆地, 二连盆地, 海拉尔盆地

Abstract: In order to study the adsorption characteristics of typical coal reservoirs of different coal ranks in Inner Mongolia,coal samples from three representative areas including the northern areas in Ordos Basin,Baiyinhua coalfield in Erlian Basin group and Yakeshi-Wujiu coalfield in Hailar Basin group were conducted isothermal adsorption tests at different temperatures and pressures. The results show that:(1) Under the reservoir temperature, the adsorption capacity of long flame coal in Yakeshi-Wujiu coalfield is the strongest,followed by high-rank coal in northern Ordos Basin,and the adsorption capacity of lignite in Baiyinhua coalfield is the smallest.(2) The adsorbability of the three coal samples decreased with the increase of temperature,and it decreased rapidly within a certain temperature range called sensitive temperature. The sensitive temperature of coal reservoirs in northern Ordos Basin is the highest,followed by Yankeshi-Wujiu coalfield and Baiyinhua coalfield.(3) The variation of the number of hydroxyl and carboxyl functional groups and the stress compaction are the main factors affecting the adsorption capacity of coal reservoirs.(4) The difference of adsorptive sensitivity temperature of coal reservoir is closely related to coal metamorphism and pore structure. In northern Ordos Basin,the coal metamorphism reaches lean coal stage,and the coal reservoir is with poor connectivity and dominantly developed nano-sized pores,with high adsorption sensitivity temperature. In Yakeshi-Wujiu coalfield,the coal metamorphism reaches long flame coal stage,and the coal reservoir is with good connectivity and dominantly developed nano-sized pores,with medium adsorption sensitivity temperature. In Baiyinhua coalfield,the coal is not metamorphosed and is in lignite stage,and the coal reservoir is with good connectivity and well-developed nano-micron pores, with low adsorption sensitive temperature. The research results provide other possibilities for coal reservoir transformation, makes it no longer limited to fracturing technology.

Key words: coal reservoirs, adsorbability, isothermal adsorption, sensitive temperature, Ordos Basin, Erlian Basin, Hailar Basin

中图分类号: 

  • TE122
[1] 王生维, 段连秀. 煤储层评价原理技术方法及应用. 武汉:中国地质大学出版社, 2012:89-91. WANG S W, DUAN L X. Principles and techniques of coal reservoir evaluation and their application. Wuhan:China University of Geosciences Press, 2012:89-91.
[2] 张群, 杨锡禄.平衡水分条件下煤对甲烷的等温吸附特性研究.煤炭学报, 1999, 24(6):566-569. ZHANG Q, YANG X L. Isothermal adsorption of coals on methane under equilibrium moisture. Journal of China Coal Society, 1999, 24(6):566-569.
[3] 苏现波, 张丽萍, 林晓英. 煤阶对煤的吸附能力的影响.天然气工业, 2005, 25(1):18-20. SU X B, ZHANG L P,LIN X Y. Influence of coal rank on coal adsorption capacity. Natural Gas Industry, 2005, 25(1):18-20.
[4] 田永东, 李宁.煤对甲烷吸附能力的影响因素.西安科技大学学报, 2007, 27(2):247-250. TIAN Y D, LI N. Affecting factors of the coal adsorbing methane capability. Journal of Xi'an University of Science and Technology, 2007, 27(2):247-250.
[5] 姚艳斌, 刘大锰.华北重点矿区煤储层吸附特征及其影响因素.中国矿业大学学报, 2007, 36(3):308-314. YAO Y B, LIU D M. Adsorption characteristics of coal reservoirs in North China and its influencing factors. Journal of China University of Mining & Technology, 2007, 36(3):308-314.
[6] 钟玲文.煤的吸附性能及影响因素.地球科学, 2004, 29(3):327-332. ZHONG L W. Adsorptive capacity of coals and its affecting factors. Earth Science, 2004, 29(3):327-332.
[7] 孟召平, 刘珊珊, 王保玉, 等. 不同煤体结构煤的吸附性能及其孔隙结构特征. 煤炭学报, 2015, 40(8):1866-1869. MENG Z P, LIU S S, WANG B Y, et al. Adsorption capacity and its pore structure of coals with different coal body structure. Journal of China Coal Society, 2015, 40(8):1866-1869.
[8] 张凯, 汤达祯, 陶树, 等.不同变质程度煤吸附能力影响因素研究. 煤炭科学技术, 2017, 45(5):192-196. ZHANG K, TANG D Z, TAO S, et al. Study on influence factors of adsorption capacity of different metamorphic degree coals. Coal Science and Technology, 2017, 45(5):192-196.
[9] 张永强, 韩志雄, 薛海军, 等.西南典型矿区煤等温吸附/解吸影响因素研究. 煤炭工程, 2019, 51(6):18-23. ZHANG Y Q, HAN Z X, XUE H J, et al. Impact factors on gas adsorption and desorption of typical mining area in southwest China. Coal Engineering, 2019, 51(6):18-23.
[10] 伊伟, 熊先钺, 王伟, 等. 鄂尔多斯盆地合阳地区煤层气赋存特征研究. 岩性油气藏, 2015, 27(2):38-45. YI W, XIONG X Y, WANG W, et al. Study on occurrence features of coalbed methane in Heyang area,Ordos Basin. Lithologic Reservoirs, 2015, 27(2):38-45.
[11] 曾社教, 马东民, 王鹏刚. 温度变化对煤层气解吸效果的影响.西安科技大学学报, 2009, 29(4):449-453. ZENG S J, MA D M, WANG P G. Effect of temperature changing on desorption of coal bed methane. Journal of Xi'an University of Science and Technology, 2009, 29(4):449-453.
[12] 降文萍.煤阶对煤吸附能力影响的微观机理研究.中国煤层气, 2009, 6(2):19-22. JIANG W P. Microscopic mechanism study on the influence of coal rank on adsorption capacity. China Coalbed Methane, 2009, 6(2):19-22.
[13] 刘俊刚, 刘大锰, 姚艳斌, 等. 韩城示范区煤层气解吸规律及其地质影响因素. 高校地质学报, 2018, 18(3):490-494. LIU J G, LIU D M, YAO Y B, et al. Desorption and its geological controls of coalbed methane in Hancheng demonstration area. Geological Journal of China Universities, 2018, 18(3):490-494.
[14] 唐书恒, 蔡超, 朱宝存, 等.煤变质程度对煤储层物性的控制作用.天然气工业, 2008, 28(12):30-33. TANG S H, CAI C, ZHU B C, et al. Control effect of coal metamorphic degree on physical properties of coal reservoirs. Natural Gas Industry, 2008, 28(12):30-33.
[15] 赵兴龙, 汤达祯, 许浩, 等.煤变质作用对煤储层孔隙系统发育的影响.煤炭学报, 2010, 35(9):1506-1510. ZHAO X L, TANG D Z, XU H, et al. Effect of coal metamorphic process on pore system of coal reservoirs. Journal Of China Coal Society, 2010, 35(9):1506-1510.
[16] 马东民, 张辉, 王贵荣. 胡家河井田煤层气等压吸附/解吸特征研究. 煤炭科学技术, 2016, 44(4):119-123. MA D M, ZHANG H, WANG G R. Study on isobaric adsorption/desorption features of coalbed methane in Hujiahe coal field. Coal Science and Technology, 2016, 44(4):119-123.
[1] 朱志良, 高小明. 陇东煤田侏罗系煤层气成藏主控因素与模式[J]. 岩性油气藏, 2022, 34(1): 86-94.
[2] 温康, 闫建平, 钟光海, 井翠, 唐洪明, 王敏, 王军, 胡钦红, 李志鹏. 川南长宁地区五峰组—龙马溪组页岩气评价新方法[J]. 岩性油气藏, 2022, 34(1): 95-105.
[3] 王永骁, 付斯一, 张成弓, 范萍. 鄂尔多斯盆地东部山西组2段致密砂岩储层特征[J]. 岩性油气藏, 2021, 33(6): 12-20.
[4] 李博, 崔军平, 李莹, 李金森, 赵金, 陈彦武. 伊陕斜坡吴起地区延长组油气成藏期次分析[J]. 岩性油气藏, 2021, 33(6): 21-28.
[5] 张玉晔, 高建武, 赵靖舟, 张恒, 吴和源, 韩载华, 毛朝瑞, 杨晓. 鄂尔多斯盆地东南部长6油层组致密砂岩成岩作用及其孔隙度定量恢复[J]. 岩性油气藏, 2021, 33(6): 29-38.
[6] 杨水胜, 王汇智, 闫骁龙, 付国民. 鄂尔多斯盆地中南部侏罗系直罗组流体包裹体特征[J]. 岩性油气藏, 2021, 33(6): 39-47.
[7] 冯雪, 高胜利, 刘永涛, 王秀珍. 鄂尔多斯盆地陇东地区延长组三角洲前缘前积结构特征[J]. 岩性油气藏, 2021, 33(6): 48-58.
[8] 邵晓州, 王苗苗, 齐亚林, 贺彤彤, 张晓磊, 庞锦莲, 郭懿萱. 鄂尔多斯盆地平凉北地区长8油藏特征及成藏主控因素[J]. 岩性油气藏, 2021, 33(6): 59-69.
[9] 赵小萌, 郭峰, 彭晓霞, 张翠萍, 郭岭, 师宇翔. 鄂尔多斯盆地安边地区延10砂质辫状河相储层特征及主控因素[J]. 岩性油气藏, 2021, 33(6): 124-134.
[10] 许璟, 贺永红, 马芳侠, 杜彦军, 马浪, 葛云锦, 王瑞生, 郭睿, 段亮. 鄂尔多斯盆地定边油田主力油层有效储层厚度[J]. 岩性油气藏, 2021, 33(5): 107-119.
[11] 徐宁宁, 王永诗, 张守鹏, 邱隆伟, 张向津, 林茹. 鄂尔多斯盆地大牛地气田二叠系盒1段储层特征及成岩圈闭[J]. 岩性油气藏, 2021, 33(4): 52-62.
[12] 李志远, 杨仁超, 张吉, 王一, 杨特波, 董亮. 天然气扩散散失率定量评价——以苏里格气田苏X区块为例[J]. 岩性油气藏, 2021, 33(4): 76-84.
[13] 许飞. 考虑化学渗透压作用下页岩气储层压裂液的自发渗吸特征[J]. 岩性油气藏, 2021, 33(3): 145-152.
[14] 魏钦廉, 崔改霞, 刘美荣, 吕玉娟, 郭文杰. 鄂尔多斯盆地西南部二叠系盒8下段储层特征及控制因素[J]. 岩性油气藏, 2021, 33(2): 17-25.
[15] 张晓辉, 张娟, 袁京素, 崔小丽, 毛振华. 鄂尔多斯盆地南梁-华池地区长81致密储层微观孔喉结构及其对渗流的影响[J]. 岩性油气藏, 2021, 33(2): 36-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[3] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[4] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[5] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[6] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[7] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .
[8] 王大兴,于波,张盟勃,宋琛. 地震叠前分析技术在子洲气田的研究与应用[J]. 岩性油气藏, 2008, 20(1): 95 -100 .
[9] 张学涛,王祝文,原镜海. 利用时频分析方法在阵列声波测井中区分油水层[J]. 岩性油气藏, 2008, 20(1): 101 -104 .
[10] 罗志立,张景廉,石兰亭. “塔里木—扬子古大陆”重建对无机成因油气的作用[J]. 岩性油气藏, 2008, 20(1): 124 -128 .