岩性油气藏 ›› 2015, Vol. 27 ›› Issue (2): 114–118.doi: 10.3969/j.issn.1673-8926.2015.02.018

• 油气田开发 • 上一篇    下一篇

底水气藏大斜度井开发优化设计研究

张 宇1,钟海全2,李永臣3,郭春秋4,史海东4   

  1.  1. 大庆油田有限责任公司 第一采油厂,黑龙江 大庆 163152 ; 2. 西南石油大学 油气藏地质及开发工程国家重点实验室,成都 610500 ; 3. 中国石油煤层气有限责任公司 忻州分公司,山西 保德 036603 ; 4. 中国石油勘探开发研究院,北京 100083
  • 出版日期:2015-03-03 发布日期:2015-03-03
  • 作者简介:张宇( 1988- ),男,硕士,主要从事油气田开发工作。 地址:( 163152 )黑龙江省大庆市让胡路区第一采油厂。 E-mail : swpu_zy@163.com
  • 基金资助:

    国家示范工程项目“阿姆河右岸天然气项目中区勘探开发一体化示范工程”(编号: 2011ZX-05059 )资助

Optimization of development of highly deviated well in gas reservoir with bottom water

ZHANG Yu1, ZHONG Haiquan2, LI Yongchen3, GUO Chunqiu4, SHI Haidong4   

  1.  1. No. 1 Oil Production Plant , PetroChina Daqing Oilfield Company Ltd. , Daqing 163152 , Heilongjiang , China ; 2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation , Southwest Petroleum University , Chengdu 610500 , China ;3. Xinzhou Branch , PetroChina Coalbed Methane Co. Ltd. , Baode 036603, Shanxi , China ; 4. PetroChina Research Institute of Petroleum Exploration & Development , Beijing 100083 , China
  • Online:2015-03-03 Published:2015-03-03

摘要:

大斜度井开发底水气藏遇到的最大问题就是底水锥进。 以数值模拟技术为手段,建立底水气藏大斜度井地质概念模型。 区别于常规单参数局部优化,采用极差法分析大斜度井开发底水气藏时复合参数的交互影响,从而能够又快又准地得出更合理的全局最优结果。同时,为准确模拟开采特征,利用多段井模拟技术并考虑气藏渗流与井筒流体流动的耦合及摩阻的影响,采用示踪剂追踪法精确模拟底水见水时间,使得指标优化更加合理可靠。 结果表明,斜井段趾端避水高度对见水时间及无水采出程度均产生影响,而斜井段长度和生产压差则对预测期末采出程度起主要作用。该项研究对底水气藏大斜度井的高效开发具有一定的指导作用。

关键词: 致密油藏, 烃源岩, 测井响应, 解释模型, 上干柴沟组下段, 扎哈泉地区, 柴达木盆地

Abstract:

The most important matter on the development of highly deviated well in gas reservoir with bottom water is water coning. A basic model of highly deviated well in gas reservoir with bottom water was established by means of numerical simulation methods. Applying orthogonal design method to analyze the interaction of compound parameters during highly deviated well developing the gas reservoir with bottom water can quickly and accurately obtain a more reasonable holistic optimization result different from the conventional local optimization with single parameter. Meanwhile, for the sake of accurate simulating of development features, used multi-segment well model to consider the effect of the friction and flow coupling between formation and well bore, and applied tracers to accurately simulate water breakthrough time of bottom water, which make the index optimization more reasonable and reliable. The result shows that the height of water avoidance at the toe of deviated segment can affect water breakthrough time and water-free recovery percent obviously, and the length of deviated segment and producing pressure drop play a major role on the recovery percent in the final prediction.This study has importance in guiding efficient development of highly deviated well in gas reservoir with bottomwater.

Key words:  tight oil reservoir, source rock, logging response, interpretation model, lower member of Upper Ganchaigou Formation, Zhahaquan area, Qaidam Basin

[1]刘石磊,郑荣才,颜文全,等.阿姆河盆地阿盖雷地区牛津阶碳酸盐岩储层特征[J].岩性油气藏,2012,24(1):57-63.

Liu Shilei,Zheng Rongcai,Yan Wenquan,et al. Characteristics of Oxfordian carbonate reservoir in Agayry area,Amu Darya Basin[J].Lithologic Reservoirs,2012,24(1):57-63.

[2]夏崇双.不同类型有水气藏提高采收率的途径和方法[J].天然气工业,2002,22(增刊 1):73-77.

Xia Chongshuang. Ways and methods of enhancing recovery in various water-carrying gas reservoirs[J]. Natural Gas Industry,2002,22(S1):73-77.

[3]唐人选,赵梓平,刘娟.水平井产量影响因素分析[J].复杂油气藏,2011,4(4):45-49.

Tang Renxuan,Zhao Ziping,Liu Juan. Analysis of the controlling factors of horizontal well production[J]. Complex Hydrocarbon Reservoirs,2011,4(4):45-49.

[4]李冬梅.TH 油田凝析气藏水平井试井合理压差的确定[J].岩性油气藏,2007,19(1):130-133.

Li Dongmei. Determination of reasonable pressure difference for horizontal well test of condensate gas reservoir testing in TH oil field[J]. Lithologic Reservoirs,2007,19(1):130-133.

[5]Ozkan E,Raghavan R. Performance of horizontal wells subject to bottomwater drive[R]. SPE 18559,1990.

[6]郭康良,郭旗,程时清.凝析气藏水平井产能计算模型及方法研究[J].岩性油气藏,2007,19(1):120-123.

Guo Kangliang,Guo Qi,Cheng Shiqing. Model and method to the productivity calculation for horizontal well of condensate gas reservoir[J]. Lithologic Reservoirs,2007,19(1):120-123.

[7]陈海龙,李晓平,李其正.水平井段最优段长度的确定方法研究[J].西南石油学院学报,2003,25(1):47-48.

Chen Hailong,Li Xiaoping,Li Qizheng. Study of the determining method of optimum length of horizontal well[J]. Journal of South-west Petroleum Institute,2003,25(1):47-48.

[8]吴克柳,李相方,韩易龙,等.底水气藏水平井临界生产压差变化规律[J].新疆石油地质,2011,32(6):630-633.

Wu Keliu,Li Xiangfang,Han Yilong,et al. Variation of critical producing pressure differential of horizontal well in gas reservoir with bottom water[J]. Xinjiang Petroleum Geology,2011,32(6):630-633.

[9]范子菲,李云娟,纪淑红.气藏水平井长度优化设计方法[J].大庆石油地质与开发,2000,19(6):28-33.

Fan Zifei,Li Yunjuan,Ji Shuhong. A method of optimized design of horizontal well length in gas reservoirs[J]. Petroleum Geology Oilfield Development in Daqing,2000,19(6):28-33.

[10]符奇,张烈辉,胡书勇,等.底水油藏水平井水平段合理位置及长度的确定[J].石油钻采工艺,2009,31(1):51-55.

Fu Qi,Zhang Liehui,Hu Shuyong,et al. Determination of optimum horizontal section location and length for horizontal wells in bottom water reservoir[J]. Oil Drilling Production Technology,2009,31(1):51-55.

[11]王涛,赵进义.底水油藏水平井含水变化影响因素分析[J].岩性油气藏,2012,24(3):104-107.

Wang Tao,Zhao Jinyi. Influencing factors of water cut for horizontal wells in bottom water reservoir[J]. Lithologic Reservoirs,2012,24(3):104-107.

[12]Thakur S,Bally K,Therry D,et al. Performance of horizontal wells in a thin oil zone between a gas cap and an aquifer immortelle field Trinidad[R]. SPE 36752,1996.

[13]匡铁.考虑水平井井筒摩阻效应的数值模拟研究[J].内蒙古石油化工,2012(7):134-135.

Kuang Tie. Numerical simulation study on horizon wellbore considering friction effect[J]. Inner Mongolia Petrochemical Industry,2012(7):134-135.

[14]张枫,李治平,董萍,等.最优开发指标确定方法及其在某低渗气藏的应用[J].天然气地球科学,2007,18(3):464-468.

Zhang Feng,Li Zhiping,Dong Ping,et al. Method research of the decision on development indexes [J]. Natural Gas Geoscience, 2007,18(3):464-468.

[1] 赵军, 韩东, 何胜林, 汤翟, 张涛. 基于水气比计算的低对比度储层流体性质识别[J]. 岩性油气藏, 2021, 33(4): 128-136.
[2] 李翔, 王建功, 李飞, 王玉林, 伍坤宇, 李亚锋, 李显明. 柴达木盆地西部始新统湖相微生物岩沉积特征——以西岔沟和梁东地区下干柴沟组为例[J]. 岩性油气藏, 2021, 33(3): 63-73.
[3] 冯德浩, 刘成林, 田继先, 太万雪, 李培, 曾旭, 卢振东, 郭轩豪. 柴达木盆地一里坪地区新近系盆地模拟及有利区预测[J]. 岩性油气藏, 2021, 33(3): 74-84.
[4] 王付勇, 杨坤. 致密油藏孔喉分布特征对渗吸驱油规律的影响[J]. 岩性油气藏, 2021, 33(2): 155-162.
[5] 龙国徽, 王艳清, 朱超, 夏志远, 赵健, 唐鹏程, 房永生, 李海鹏, 张娜, 刘健. 柴达木盆地英雄岭构造带油气成藏条件与有利勘探区带[J]. 岩性油气藏, 2021, 33(1): 145-160.
[6] 田光荣, 王建功, 孙秀建, 李红哲, 杨魏, 白亚东, 裴明利, 周飞, 司丹. 柴达木盆地阿尔金山前带侏罗系含油气系统成藏差异性及其主控因素[J]. 岩性油气藏, 2021, 33(1): 131-144.
[7] 孔红喜, 王远飞, 周飞, 朱军, 陈阳阳, 宋德康. 鄂博梁构造带油气成藏条件分析及勘探启示[J]. 岩性油气藏, 2021, 33(1): 175-185.
[8] 徐宇轩, 代宗仰, 胡晓东, 徐志明, 李丹. 川东北沙溪庙组天然气地球化学特征及地质意义——以五宝场地区为例[J]. 岩性油气藏, 2021, 33(1): 209-219.
[9] 姚军, 乐幸福, 陈娟, 苏旺, 张永峰. 基于拟三维多属性反演的优质烃源岩分布预测[J]. 岩性油气藏, 2021, 33(1): 248-257.
[10] 蒋中发, 丁修建, 王忠泉, 赵辛楣. 吉木萨尔凹陷二叠系芦草沟组烃源岩沉积古环境[J]. 岩性油气藏, 2020, 32(6): 109-119.
[11] 田继先, 赵健, 张静, 孔骅, 房永生, 曾旭, 沙威, 王牧. 柴达木盆地英雄岭地区硫化氢形成机理及分布预测[J]. 岩性油气藏, 2020, 32(5): 84-92.
[12] 张道伟, 薛建勤, 伍坤宇, 陈晓冬, 王牧, 张庆辉, 郭宁. 柴达木盆地英西地区页岩油储层特征及有利区优选[J]. 岩性油气藏, 2020, 32(4): 1-11.
[13] 陈更新, 王建功, 杜斌山, 刘应如, 李艳丽, 杨会洁, 李志明, 俞晓峰. 柴达木盆地尖北地区裂缝性基岩气藏储层特征[J]. 岩性油气藏, 2020, 32(4): 36-47.
[14] 黄彦杰, 白玉彬, 孙兵华, 黄礼, 黄昌武. 鄂尔多斯盆地富县地区延长组长7烃源岩特征及评价[J]. 岩性油气藏, 2020, 32(1): 66-75.
[15] 孙哲, 彭靖淞, 江尚昆, 叶涛, 郭颖. 渤海海域庙西中南洼围区烃源岩有机相与测井评价[J]. 岩性油气藏, 2020, 32(1): 102-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .