岩性油气藏 ›› 2016, Vol. 28 ›› Issue (3): 48–57.doi: 10.3969/j.issn.1673-8926.2016.03.008

• 油气地质 • 上一篇    下一篇

四川盆地龙马溪组页岩储层孔隙结构的定量表征

龚小平1,2,唐洪明1,2,赵 峰1,2,王俊杰1,2,熊 浩1,2   

  1. 1. 油气藏地质及开发工程国家重点实验室 · 西南石油大学,成都 610500 ; 2. 西南石油大学 地球科学与技术学院,成都 610500
  • 出版日期:2016-05-20 发布日期:2016-05-20
  • 通讯作者: 唐洪明(1966-),男,博士,教授,博士生导师,主要从事储层微观分析与油气层保护等方面的教学工作。 E-mail:swpithm@vip.163.com。
  • 作者简介:龚小平( 1990- ),男,西南石油大学在读硕士研究生,研究方向为储层微观分析与油气层保护。 地址:( 610500 )四川省成都市新都区西南石油大学地球科学与技术学院。 E-mail : 836411812@qq.com
  • 基金资助:

    国家自然科学基金重点项目“致密气藏储层干化、提高气体渗流能力的基础研究”(编号: 51534006 )和国家自然科学基金项目“基于产 能保护的致密砂岩气藏水基欠平衡钻井欠压值研究”(编号: 51304167 )联合资助

Quantitative characterization of pore structure in shale reservoir of Longmaxi Formation in Sichuan Basin

GongXiaoping 1,2, TangHongming 1,2, ZhaoFeng 1,2, WangJunjie 1,2, XiongHao 1,2   

  1. 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation , Southwest Petroleum University , Chengdu 610500 , China ; 2. School of Geoscience and Technology , Southwest Petroleum University , Chengdu 610500 , China
  • Online:2016-05-20 Published:2016-05-20

摘要:

页岩孔隙结构的定量表征可为页岩储层质量评价提供基础参数,但是利用常规方法很难准确表征页岩的微米—纳米级孔隙结构。 以四川盆地龙马溪组含气页岩为研究对象,综合对比常用的氮气( N 2 )吸附法、高压压汞法、核磁共振法等页岩测试手段的原理及优缺点,提出利用低压氮气吸附法测得的累计孔径分布来拟合页岩核磁 T 2 谱相对应的累计孔径分布,优化页岩核磁 T 2 谱与孔径的转换系数 C ,进而应磁共振测试结果来表征页岩中不同尺度的孔隙分布。 该方法可以弥补传统的低压氮气吸附与高压压汞联合表征方法的不足,因为高压压汞法测试可能会导致页岩破裂,产生大量微米级裂缝,这些微裂缝很难与天然微裂缝区分开。 此外,核磁共振具有对岩样加工简单、人工破坏性小、测试不需外来压力等优点,因此推荐低压氮气吸附法与核磁共振法联合表征页岩的孔隙结构方法,它能科学、准确地表征页岩的孔喉分布。 研究表明,龙马溪组页岩孔径分布曲线具有双峰或三峰特征,主要孔径为 0.2~100.0 nm ,介孔和微孔占优势,孔隙体积百分比分别为 67.75% 和 25.33% 。 最终明确了该区页岩储层孔隙结构的定量表征方法。

关键词: 页岩, 孔隙结构, 低压氮气吸附, 高压压汞, 核磁共振, 定量表征, 龙马溪组, 四川盆地

Abstract:

Quantitative characterization of pore structure in shale can indicate some basic parameters for shale reservoir quality evaluation. However, it is difficult to use conventional methods to accurately characterize the micron to nano-scale pore structure in shale. This paper took gas-bearing shale of Longmaxi Formation in Sichuan Basin as a study object to comprehensively compare the principles, advantages and disadvantages of the mostly used test approaches such as nitrogen adsorption, high-pressure mercury injection and nuclear magnetic resonance(NMR), etc. Nitrogen adsorption method is usually used to test the pore which is 1-50 nm in size, high-pressure mercury injection method is proposed to test for macropore (> 50 nm), and NMR can reflect the pore size distribution by testing the relaxation time (T2) spectrum of the saturated fluid in shale. The pore size in shale is positively related to the T2 value tested by NMR and there exists a conversion coefficient (C). A new method of combining NMR with low-pressure nitrogen adsorption for testing pore size distribution in shale was proposed, which optimizes the conversion coefficient (C) between pore size (D) tested by low-pressure nitrogen adsorption method and T2 value tested by NMR method firstly, and then the pore size distribution can be characterized by NMR based on the C value. Large amounts of micron-fractures could be caused in the process of high-pressure mercury injection, and these fractures are considered to be artificial fractures which is difficult to distinguish from natural micro-fractures, so the new method can make up for the deficiency of the conventional method for pore size distribution characterization by combining lowpressure nitrogen adsorption and high-pressure mercury injection. In addition, because of the advantages of simple sample processing, small artificial destruction, no external pressure, etc, it is recommended to characterize the pore structure by combining low-pressure nitrogen adsorption and NMR to reflect the pore throat distribution scientifically and accurately. The result shows that the pore size distribution in Longmaxi shale is bimodal or trimodal, and the main pore size is 0.2-100.0 nm. The mesopore and micropore are predominated, and their volume percents are 67.75% and 25.33% respectively. This method was used to quantitatively characterize the pore structure in shale in the study area, and the test result accords with the pore structure characteristics of Longmaxi shale.

Key words: shale , pore structure , low-pressure nitrogen adsorption , high-pressure mercury injection , nuclear magnetic resonance , quantitative characterization , Longmaxi Formation , Sichuan Basin

[1] 顾忠安,郑荣才,王亮,等.渝东涪陵地区大安寨段页岩储层特征研究[J].岩性油气藏,2014,26(2):67-73.

Gu Zhong’an,Zheng Rongcai,Wang Liang,et al. Characteristics of shale reservoir of Da’anzhai segment in Fuling area,eastern Chongqing[J]. Lithologic Reservoirs,2014,26(2):67-73.

[2] 张小龙,张同伟,李艳芳,等.页岩气勘探和开发进展综述[J].岩性油气藏,2013,25(2):116-122.

Zhang Xiaolong,Zhang Tongwei,Li Yanfang,et al. Research advance in exploration and development of shale gas[J]. Lithologic Reservoirs,2013,25(2):116-122.

[3] Loucks R G,Reed R M,Ruppel S C,et al. Morphology,genesis,and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J]. Journal of Sedimentary Research, 2009,79:848-861.

[4] Javadpour F,Fisher D,Unsworth M. Nanoscale gas flow in shale gas sediments[J]. Journal of Canadian Petroleum Technology,2007,46(10):55-61.

[5] 陈尚斌,朱炎铭,王红岩,等.川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J].煤炭学报,2012,37(3):438-444.

Chen Shangbin,Zhu Yanming,Wang Hongyan,et al. Structure characteristics and accumulation significance of nanopores in Longmaxi shalegas reservoir in thesouthern Sichuan Basin[J]. Journal of China Coal Society,2012,37(3):438-444.

[6] Loucks R G,Reed R M,Ruppel S C,et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrixrelated mudrock pores [J]. AAPG Bulletin,2012,96 (6):1071-1098.

[7] 田华,张水昌,柳少波,等.压汞法和气体吸附法研究富有机质页岩孔隙特征[J].石油学报,2012,33(3):419-427.

Tian Hua,Zhang Shuichang,Liu Shaobo,et al. Determination of organic-rich shale pore features by mercury injection and gas adsorption methods[J]. Acta Petrolei Sinica,2012,33(3):419-427.

[8] 郝乐伟,王琪,唐俊.储层岩石微观孔隙结构研究方法与理论综述[J].岩性油气藏,2013,25(5):123-128.

Hao Lewei,Wang Qi,Tang Jun. Research progress of reservoir microscopic pore structure[J]. Lithologic Reservoirs,2013,25(5):123-128.

[9]崔景伟,邹才能,朱如凯,等.页岩孔隙研究新进展[J].地球科学进展,2012,27(12):1319-1325.

Cui Jingwei,Zou Caineng,Zhu Rukai,et al. New advances in shale porosity research[J]. Advances in Earth Science,2012,27(12):1319-1325.

[10]Shi Yujiang,Yang Hua,Mao Zhiqiang,et al. Comparisons of pore structure for unconventional tight gas,coalbed methane and shale gas reservoirs[R]. SPE 165774,2013.

[11]Labani M M,Rezaee R,Saeedi A,et al. Evaluation of pore size spectrum of gas shale reservoirs using low pressure nitrogen adsorption,gas expansion and mercury porosimetry:A case study from the Perth and Canning Basins,Western Australia [J]. Journal of Petroleum Science & Engineering,2013,112(3):7-16.

[12]靳军,向宝力,杨召,等.实验分析技术在吉木萨尔凹陷致密储层研究中的应用[J].岩性油气藏,2015,27(3):18-25.

Jin Jun,Xiang Baoli,Yang Zhao,et al. Application of experimental analysis technology to research of tight reservoir in Jimsar Sag[J].Lithologic Reservoirs,2015,27(3):18-25.

[13]Chalmers G R,Bustin R M,Power I M. Characterization of gas shale pore systems by porosimetry,pycnometry,surface area,and field emission scanning electron microscopy/transmission electron microscopy image analyses:Examples from the Barnett,Woodford,Haynesville,Marcellus,and Doig units[J]. AAPG Bulletin,2012,96(6):1099-1119.

[14]白斌,朱如凯,吴松涛,等.利用多尺度 CT 成像表征致密砂岩微观孔喉结构[J].石油勘探与开发,2013,40(3):329-333.

Bai Bin,Zhu Rukai,Wu Songtao,et al. Multi-scale method of nano (micro)-CT study on microscopic pore structure of tight sandstone of Yanchang Formation,Ordos Basin[J]. Petroleum Exploration and Development,2013,40(3):329-333.

[15]黄金亮,邹才能,李建忠,等.川南志留系龙马溪组页岩气形成条件与有利区分析[J].煤炭学报,2012,37(5):782-787.

Huang Jinliang,Zou Caineng,Li Jianzhong,et al. Shale gas accumulation conditions and favorable zones of Silurian Longmaxi Formation in south Sichuan Basin,China[J]. Journal of China Coal Society,2012,37(5):782-787.

[16]曾祥亮,刘树根,黄文明,等.四川盆地志留系龙马溪组页岩与美国 Fort Worth 盆地石炭系 Barnett 组页岩地质特征对比[J].地质通报,2011,30(2/3):372-384.

Zeng Xiangliang,Liu Shugen,Huang Wenming,et al. Comparison of Silurian Longmaxi Formation shale of Sichuan Basin in China and Carboniferous Barnett Formation shale of Fort Worth Basin in United States [J]. Geological Bulletin of China,2011,30 (2/3):372-384.


[17]张金川,聂海宽,徐波,等.四川盆地页岩气成藏地质条件[J].天然气工业,2008,28(2):151-156.


Zhang Jinchuan,Nie Haikuan,Xu Bo,et al. Geological condition of shale gas accumulation in Sichuan Basin[J]. Natural Gas Industry,2008,28(2):151-156.

[18]蒋裕强,董大忠,漆麟,等.页岩气储层的基本特征及其评价[J].天然气工业,2010,30(10):7-12.

Jiang Yuqiang,Dong Dazhong,Qi Lin,et al. Basic features and evaluation of shale gas reservoirs[J]. Natural Gas Industry,2010,30(10):7-12.



[19]Adesida A G,Akkutlu I Y,Resasco D E,et al. Kerogen pore size distribution of Barnett shale using DFT analysis and Monte Carlo simulation[R]. SPE 147397,2011.

[20]谢晓永,唐洪明,王春华,等.氮气吸附法和压汞法在测试泥页岩孔径分布中的对比[J].天然气工业,2006,26(12):100-102.

Xie Xiaoyong,Tang Hongming,Wang Chunhua,et al. Contrast of nitrogen adsorption method and mercury porosimetry method in analysis of shale’s pore[J]. Natural Gas Industry,2006,26(12):100-102.

[21]徐祖新,郭少斌.基于 NMR 和 X-CT 的页岩储层孔隙结构研究[J].地球科学进展,2014,29(5):624-631.

Xu Zuxin,Guo Shaobin. Application of NMR and X-CT technology in the pore structure study of shale gas reservoirs[J]. Advances in Earth Science,2014,29(5):624-631.

[22]孙军昌,陈静平,杨正明,等.页岩储层岩芯核磁共振响应特征实验研究[J].科技导报,2012,30(14):25-29.

Sun Junchang,Chen Jingping,Yang Zhengming,et al. Experimental study of the NMR characteristics of shale reservoir rock

[J]. Science & Technology Review,2012,30(14):25-29.

[23]张烈辉,郭晶晶,唐洪明,等.四川盆地南部下志留统龙马溪组页岩孔隙结构特征[J].天然气工业,2015,35(3):22-29.

Zhang Liehui,Guo Jingjing,Tang Hongming,et al. Pore structure characteristics of Longmaxi shale in southern Sichuan Basin [J].Natural Gas Industry,2015,35(3):22-29.

[24]李海波,朱巨义,郭和坤.核磁共振T2 谱换算孔隙半径分布方法研究[J].波谱学杂志,2008,25(2):273-280.

Li Haibo,Zhu Juyi,Guo Hekun. Methods for calculating pore radius distribution in rock from NMR T2 spectra[J]. Chinese Journal of Magnetic Resonance,2008,25(2):273-280.

[25]Comisky J T,Santiago M,McCollom B,et al. Sample size effects on the application of mercury injection capillary pressure for determining the storage capacity of tight gas and oil shales[R]. CSUG/SPE149432,2011.

[26]周宇,魏国齐,郭和坤.核磁共振孔隙度影响因素分析与校准[J].测井技术,2011,35(3):210-214.

Zhou Yu,Wei Guoqi,Guo Hekun. Impact factors analysis and decision tree correction of NMR porosity measurements[J]. Well Logging Technology,2011,35(3):210-214.

[27]李晓峰,李庆峰,董丽欣.中基性火山岩顺磁物质对核磁共振孔隙度的影响分析[J].测井技术,2014,38(5):522-525.

Li Xiaofeng,Li Qingfeng,Dong Lixin. On impact of paramagnetic pubstances on nuclear magnetic porosity of intermediate to basic volcanic rocks[J]. Well Logging Technology,2014,38(5):522-525.
[1] 易志凤, 张尚锋, 王雅宁, 徐恩泽, 赵韶华, 王玉瑶. 差异曲率下的曲流河点坝砂体定量表征——以黄河源区白河现代沉积为例[J]. 岩性油气藏, 2022, 34(1): 34-42.
[2] 王登, 周豹, 冷双梁, 温雅茹, 刘海, 张小波, 余江浩, 陈威. 鄂西咸丰地区五峰组—龙马溪组硅质岩地球化学特征及地质意义[J]. 岩性油气藏, 2022, 34(1): 52-62.
[3] 徐诗雨, 林怡, 曾乙洋, 赵春妮, 何开来, 杨京, 黎洋, 祝怡. 川西北双鱼石地区下二叠统栖霞组气水分布特征及主控因素[J]. 岩性油气藏, 2022, 34(1): 63-72.
[4] 温康, 闫建平, 钟光海, 井翠, 唐洪明, 王敏, 王军, 胡钦红, 李志鹏. 川南长宁地区五峰组—龙马溪组页岩气评价新方法[J]. 岩性油气藏, 2022, 34(1): 95-105.
[5] 何贤, 闫建平, 王敏, 王军, 耿斌, 李志鹏, 钟光海, 张瑞湘. 低渗透砂岩孔隙结构与采油产能关系——以东营凹陷南坡F154区块为例[J]. 岩性油气藏, 2022, 34(1): 106-117.
[6] 赵笑笑, 闫建平, 王敏, 何贤, 钟光海, 王军, 耿斌, 胡钦红, 李志鹏. 沾化凹陷沙河街组湖相泥页岩夹层特征及测井识别方法[J]. 岩性油气藏, 2022, 34(1): 118-129.
[7] 杨占伟, 姜振学, 梁志凯, 吴伟, 王军霞, 宫厚健, 李维邦, 苏展飞, 郝绵柱. 基于2种机器学习方法的页岩TOC含量评价——以川南五峰组—龙马溪组为例[J]. 岩性油气藏, 2022, 34(1): 130-138.
[8] 李梦莹, 朱如凯, 胡素云. 海外陆相页岩油地质特征与资源潜力[J]. 岩性油气藏, 2022, 34(1): 163-174.
[9] 李小佳, 邓宾, 刘树根, 吴娟, 周政, 焦堃. 川南宁西地区五峰组—龙马溪组多期流体活动[J]. 岩性油气藏, 2021, 33(6): 135-144.
[10] 杜猛, 向勇, 贾宁洪, 吕伟峰, 张景, 张代燕. 玛湖凹陷百口泉组致密砂砾岩储层孔隙结构特征[J]. 岩性油气藏, 2021, 33(5): 120-131.
[11] 毛锐, 牟立伟, 王刚, 樊海涛. 基于核磁共振自由弛豫特征的含油性评价方法——以玛湖凹陷下乌尔禾组砾岩储层为例[J]. 岩性油气藏, 2021, 33(5): 140-147.
[12] 王静怡, 周志军, 魏华彬, 崔春雪. 基于页岩孔隙网络模型的油水两相流动模拟[J]. 岩性油气藏, 2021, 33(5): 148-154.
[13] 张兵, 唐书恒, 郗兆栋, 蔺东林, 叶亚培. 湘西北地区五峰组—龙马溪组生物地层特征及勘探意义[J]. 岩性油气藏, 2021, 33(5): 11-21.
[14] 杨荣军, 彭平, 张静, 叶茂, 文华国. 四川盆地奉节地区上古生界古隆起特征及地质意义[J]. 岩性油气藏, 2021, 33(4): 1-9.
[15] 柴毓, 王贵文, 柴新. 四川盆地金秋区块三叠系须二段储层非均质性及成因[J]. 岩性油气藏, 2021, 33(4): 29-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[2] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[3] 李云,时志强. 四川盆地中部须家河组致密砂岩储层流体包裹体研究[J]. 岩性油气藏, 2008, 20(1): 27 -32 .
[4] 蒋韧,樊太亮,徐守礼. 地震地貌学概念与分析技术[J]. 岩性油气藏, 2008, 20(1): 33 -38 .
[5] 邹明亮,黄思静,胡作维,冯文立,刘昊年. 西湖凹陷平湖组砂岩中碳酸盐胶结物形成机制及其对储层质量的影响[J]. 岩性油气藏, 2008, 20(1): 47 -52 .
[6] 王冰洁,何生,倪军娥,方度. 板桥凹陷钱圈地区主干断裂活动性分析[J]. 岩性油气藏, 2008, 20(1): 75 -82 .
[7] 陈振标,张超谟,张占松,令狐松,孙宝佃. 利用NMRT2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 20(1): 105 -110 .
[8] 张厚福,徐兆辉. 从油气藏研究的历史论地层-岩性油气藏勘探[J]. 岩性油气藏, 2008, 20(1): 114 -123 .
[9] 张 霞. 勘探创造力的培养[J]. 岩性油气藏, 2007, 19(1): 16 -20 .
[10] 杨午阳, 杨文采, 刘全新, 王西文. 三维F-X域粘弹性波动方程保幅偏移方法[J]. 岩性油气藏, 2007, 19(1): 86 -91 .