岩性油气藏 ›› 2017, Vol. 29 ›› Issue (6): 76–83.doi: 10.3969/j.issn.1673-8926.2017.06.010

• 技术方法 • 上一篇    下一篇

基于流动单元的致密砂岩气储层渗透率测井评价——以川中广安地区须家河组为例

陈志强1, 吴思源1, 白蓉2, 雷刚3   

  1. 1. 西南石油大学 地球科学与技术学院, 成都 610500;
    2. 中国石油西南油气田公司 勘探开发研究院, 成都 610041;
    3. 中国石油青海油田测试公司, 甘肃 敦煌 736202
  • 收稿日期:2017-05-13 修回日期:2017-08-17 出版日期:2017-11-21 发布日期:2017-11-21
  • 作者简介:陈志强(1993-),男,西南石油大学在读硕士研究生,研究方向为致密储层特征及其测井评价方法。地址:(610500)四川省成都市新都区新都大道8号。Email:923072402@qq.com。
  • 基金资助:
    大型油气田及煤层气开发国家重大科技专项"四川盆地大型碳酸盐岩气田开发示范工程"(编号:2016ZX05052)资助

Logging evaluation for permeability of tight sandstone gas reservoirs based on flow unit classification:a case from Xujiahe Formation in Guang' an area,central Sichuan Basin

CHEN Zhiqiang1, WU Siyuan1, BAI Rong2, LEI Gang3   

  1. 1. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
    2. Research Institute of Exploration and Development, PetroChina Southwest Oil & Gas Field Company, Chengdu 610041, China;
    3. Test Company, PetroChina Qinghai Oilfield Company, Dunhuang 736202, Gansu, China
  • Received:2017-05-13 Revised:2017-08-17 Online:2017-11-21 Published:2017-11-21

摘要: 四川盆地广安地区须家河组致密砂岩气储层非均质性极强,使得孔隙度与渗透率相关性差,难以通过单一的孔隙度与渗透率回归模型准确计算渗透率。因此,利用859块标准柱塞样物性分析数据,根据流动单元指数(FZI)由小到大,划分出了5类流动单元,并建立了相应的孔隙度与渗透率统计回归模型,每种类型流动单元的孔隙度与渗透率相关性良好。为了使用这组分类统计模型,需要连续的FZI来划分整个目的层段的流动单元类型。为此,选择了20块典型样品开展高压压汞与核磁共振联测实验。基于联测实验数据,得到了利用核磁共振测井计算Swanson参数、利用Swanson参数计算储层品质因子(RQI)、利用RQI计算FZI的转换模型,实现了FZI的连续定量评价,最终实现了研究区致密砂岩气储层流动单元类型的连续划分及其渗透率的测井评价。现场应用结果表明:利用核磁共振测井计算FZI与岩心分析FZI较为接近,该方法可有效解决FZI连续定量评价的问题;相比于单一的孔隙度和渗透率回归模型与核磁Coates模型,流动单元分类的渗透率计算结果与岩心分析渗透率吻合度更高,该方法有效地提高了渗透率测井评价的准确度。上述方法在类似的致密砂岩气储层渗透率测井评价中具有推广价值。

关键词: 储集层, 层序地层, 白云岩化作用, 飞仙关组, 下三叠统, 达川-万县地区

Abstract: Strong heterogeneity exists in the tight sandstone gas reservoirs of Xujiahe Formation in Guang' an area, central Sichuan Basin, which leads to poor correlation between porosity and permeability. It is difficult to calculate the permeability directly by using a single regression model. Therefore,physical property data from 859 standard plunger cores,the reservoir was divided into five types of flow unit according to Flow Unit Index(FZI)from small to large,the corresponding regression models were established,and there was a good correlation between porosity and permeability in each type of Flow Unit. In order to make the established models for every type of flow unit available in estimating permeability in the whole intervals in field application,the consecutive FZI should be first obtained to classify formation. Therefore,20 typical samples were selected to carry out Nuclear Magnetic Resonance(NMR)and mercury injection experiment. On the basis of experiment data, conversion models between T2 geometric mean(T2 lm)and Swanson parameter, Swanson parameter and reservoir quality index (RQI),RQI and FZI were established. Models of calculating the key factor of RQI in expression of FZI estimation formula were established,and then a credible technique of extracting FZI consecutively from NMR logs was proposed, which ensures the credibility of formation classification by using the predicted FZI. Finally, continuous division of flow unit and logging evaluation for permeability of tight sandstone gas reservoirs in the study area were succeeded. Application results show that the FZI calculated by NMR log calculation is consistent with core analysis FZI, and NMR log can effectively solve the problem of continuously quantitative evaluation of FZI. Compared with single regression model and NMR Coates model,permeability value calculated by the classification of flow unit is more consistent with core analysis,this method can effectively improve the accuracy of permeability logging evaluation. This method can be used in tight gas reservoir evaluation and deliverability prediction directly.

Key words: reservoir, sequence stratigraphy, dolomitization, Feixianguan Formation, Lower Triassic, Dachuan-Wanxian area

中图分类号: 

  • P631.8
[1] 马新华, 贾爱林, 谭健, 等.中国致密砂岩气开发工程技术与实践.石油勘探与开发, 2012, 39(5):572-579. MA X H, JIA A L, TAN J, et al. Tight sand gas development technologies and practices in China. Petroleum Exploration and Development, 2012, 39(5):572-579.
[2] 赵会涛, 王怀厂, 刘健, 等.鄂尔多斯盆地东部地区盒8段致密砂岩气低产原因分析.岩性油气藏, 2014, 26(5):75-79. ZHAO H T, WANG H C, LIU J, et al. Reasons of low yield of tight sandstone gas of He 8 member in eastern Ordos Basin. Lithologic Reservoirs, 2014, 26(5):75-79.
[3] 王伟明, 卢双舫, 陈旋, 等.致密砂岩气资源分级评价新方法——以吐哈盆地下侏罗统水西沟群为例.石油勘探与开发, 2015, 42(1):60-67. WANG W M, LU S F, CHEN X, et al. A new method for grading and assessing the potential of tight sand gas resources:a case study of the Lower Jurassic Shuixigou group in the Turpan-Hami Basin. Petroleum Exploration and Development, 2015, 42(1):60-67.
[4] 楚翠金, 夏志林, 杨志强.延川南区块致密砂岩气测井识别与评价技术.岩性油气藏, 2017, 29(2):131-138. CHU C J, XIA Z L, YANG Z Q. Logging identification and evaluation of tight sandstone gas in the southern Yanchuan block. Lithologic Reservoirs, 2017, 29(2):131-138.
[5] 雍世和, 张超谟.测井数据处理与综合解释.东营:中国石油大学出版社, 2007:141-144. YONG S H, ZHANG C M. Logging data processing and comprehensive interpretation. Dongying:China University of Petroleum Press, 2007:141-144.
[6] 卞从胜, 汪泽成, 徐兆辉, 等.构造沉降梯度对盆地沉积体系发育的控制作用.中国石油勘探, 2014, 19(3):29-40. BIAN C S, WANG Z C, XU Z H, et al. Controlling effect of structural sedimentation gradient on development of basin sedimentation system. China Petroleum Exploration, 2014, 19(3):29-40.
[7] 张志杰, 李伟, 杨家静, 等.川中广安地区上三叠统须家河组岩相组合与沉积特征.地学前缘, 2009, 16(1):296-305. ZHANG Z J, LI W, YANG J J, et al. Lithofacies association and depositional characteristics of the Upper Triassic Xujiahe Formation in Guang' an area, Central Sichuan Basin. Earth Science Frontiers, 2009, 16(1):296-305.
[8] 张富贵, 刘家铎, 孟万斌.川中地区须家河组储层成岩作用与孔隙演化研究.岩性油气藏, 2010, 22(1):30-36. ZHANG F G, LIU J D, MENG W B. Diagenesis and porosity evolution of Xujiahe Formation in central Sichuan Basin. Lithologic Reservoirs, 2010, 22(1):30-36.
[9] 王亮, 毛志强, 孙中春, 等.泥质砂岩液相渗透率计算新方法. 地球物理学报, 2015, 58(10):3837-3844. WANG L, MAO Z Q, SUN Z C, et al. A new method for calculating fluid permeability of shaly sandstone. Chinese Journal of Geophysics, 2015, 58(10):3837-3844.
[10] 刘彦成, 罗宪波, 康凯, 等.陆相多层砂岩油藏渗透率表征与定向井初期产能预测——以蓬莱19-3油田为例. 石油勘探与开发, 2017, 44(1):97-103. LIU Y C, LUO X B, KANG K, et al. Permeability characterization and directional wells initial productivity prediction in the continental multilayer sandstone reservoirs:a case from Penglai 19-3 oil field, Bohai Bay Basin. Petroleum Exploration and Development, 2017, 44(1):97-103.
[11] 尹帅, 丁文龙, 单钰铭, 等.利用致密砂岩储层电导率参数求取渗透率.岩性油气藏, 2016, 28(6):117-124. YIN S, DING W L, SAN Y M, et al. Permeability calculation of tight sandstone reservoir by conductivity parameters. Lithologic Reservoirs, 2016, 28(6):117-124.
[12] 焦乃林, 丁文龙, 尹帅, 等.通过构建基于地层岩石电导率的动态渗透率图版求取致密砂岩储层渗透率方法.科学技术与工程, 2016, 16(21):20-26. JIAO N L, DING W L, YIN S, et al. Method of calculating tight sandstone reservoir permeability by creating dynamic permeability chart based on formation rock conductivity. Science Technology and Engineering, 2016, 16(21):20-26.
[13] 赖锦, 王贵文, 罗官幸, 等.基于岩石物理相约束的致密砂岩气储层渗透率解释建模.地球物理学进展, 2014, 29(3):1173-1182. LAI J, WANG G W, LUO G X, et al. A fine logging interpretation model of permeability confined by petrophysical facies of tight gas sandstone reservoirs. Progress in Geophysics, 2014, 29(3):1173-1182.
[14] 孟万斌, 吕正祥, 唐宇, 等.基于砂岩组构分类评价的储层渗透率预测.中国石油大学学报(自然科学版), 2013, 37(2):1-6. MENG W B, LYU Z X, TANG Y, et al. Reservoir permeability prediction based on sandstone texture classification. Journal of China University of Petroleum(Edition of Natural Sciences), 2013, 37(2):1-6.
[15] 陈科贵, 陈旭, 张家浩.复合渗透率测井评价方法在砂砾岩稠油油藏的应用——以克拉玛依油田某区八道湾组为例.地球科学进展, 2015, 30(7):773-779. CHEN K G, CHEN X, ZHANG J H. Combined methods of permeability logging evaluate in glutenite reservoirs:a case study of Badaowan Formation in Karamay Oilfield. Advances in Earth Science, 2015, 30(7):773-779.
[16] 郑香伟, 吴健, 何胜林, 等.基于流动单元的砂砾岩储层渗透率测井精细评价.吉林大学学报(地球科学版), 2016, 46(1):286-294. ZHENG X W, WU J, HE S L, et al. Fine evaluation of permeability of conglomerate reservoir based on flow unit. Journal of Jilin University(Earth Science Edition), 2016, 46(1):286-294.
[17] 吕明针, 林承焰, 张宪国, 等.储层流动单元划分方法评价及优选.岩性油气藏, 2015, 27(1):74-80. LYU M Z, LIN C Y, ZHANG X G, et al. Evaluation and optimization of flow unit division methods. Lithologic Reservoirs, 2015, 27(1):74-80.
[18] 宋宁, 刘振, 张剑风, 等.基于流动单元分类的非均质砂岩储集层渗透率预测.科技导报, 2013, 31(2):68-71. SONG N, LIU Z, ZHANG J F, et al. Permeability prediction of heterogeneous sand reservoir based on flow unit classification. Science & Technology Review, 2013, 31(2):68-71.
[19] 范宜仁, 葛新民, 汪海龙, 等.非均质性砂砾岩储层渗透率预测方法研究.西南石油大学学报(自然科学版), 2010, 32(3):6-10. FAN Y R, GE X M, WANG H L, et al. Study on the method predicting permeability in the heterogeneous glutenite reservoir. Journal of Southwest Petroleum University(Science & Technology Edition), 2010, 32(3):6-10.
[20] 莫尼卡德.测定储集岩性质的岩心分析.薛维钧, 译.北京:石油工业出版社, 1987:35-42. MONICARD R P. Properties of reservoir rocks:Core analysis. XUE W J, trans. Beijing:Petroleum Industry Press, 1987:35-42.
[21] CARMAN P C. Fluid flow through granular beds. Transactions of the Institute of Chemical Engineering, 1937(15):150-166.
[22] NOORUDDIN H A, HOSSAIN M E. Modified Kozeny-Carmen correlation for enhanced hydraulic flow unit characterization. Journal of Petroleum Science & Engineering, 2012, 80(1):107-115.
[23] HEARN C L, EBANKS W J, TYE R S, et al. Geological factors influencing reservoir performance of the Hartzog Draw Field, Wyoming. Journal of Petroleum Technology, 1984, 36(8):1335-1344.
[24] EBANKS W J. Flow unit concept-Integrated approach to reservoirs description for engineering projects. AAPG Bulletin, 1987, 71(5):551-552.
[25] AMAEFULE J O, ALTUNBAY M, TIAB D, et al. Enhanced reservoir description:using core and log data to identify hydraulic (flow)units and predict permeability in uncored intervals/wells. SPE Annual Technical Conference and Exhibition, Houston, 1993.
[26] THOMEER J H M. Introduction of a pore geometrical factor defined by the capillary pressure curve. Journal of Petroleum Technology, 1960, 12(3):73-77.
[27] SWANSON B F. A simple correlation between permeabilities and mercury capillary pressures. Journal of Petroleum Technology, 1981, 33(12):2498-2504.
[28] XIAO L, MAO Z Q, WANG Z N, et al. Application of NMR logs in tight gas reservoirs for formation evaluation:a case study of Sichuan Basin in China. Journal of Petroleum Science & Engineering, 2012, 81(2):182-195.
[29] 肖立志, 谢然红, 廖广志.中国复杂油气藏核磁共振测井理论与方法.北京:科学出版社, 2012:48-49. XIAO L Z, XIE R H, LIAO G Z. Nuclear magnetic resonance logging theory and method for complex oil and gas reservoirs in China. Beijing:Science Press, 2012:48-49.
[1] 罗晓彤, 文华国, 彭才, 李云, 赵研. 巴西桑托斯盆地L油田BV组湖相碳酸盐岩沉积特征及高精度层序划分[J]. 岩性油气藏, 2020, 32(3): 68-81.
[2] 赵汉卿, 温慧芸, 穆朋飞, 李超, 吴穹螈. 垦利A油田沙三上段近源辫状河三角洲沉积特征[J]. 岩性油气藏, 2019, 31(3): 37-44.
[3] 芮志锋, 林畅松, 杜家元, 丁琳, 李潇. 关键层序界面识别及其在岩性油气藏勘探中的意义——以惠州凹陷珠江组为例[J]. 岩性油气藏, 2019, 31(1): 96-105.
[4] 刘雁婷. 川东北地区长兴组—飞仙关组储层特征[J]. 岩性油气藏, 2019, 31(1): 78-86.
[5] 杨应, 杨巍, 朱仕军. 基于EEMD的高分辨率层序地层划分方法[J]. 岩性油气藏, 2018, 30(5): 59-67.
[6] 臧士宾, 郑永仙, 崔俊, 毛建英, 张小波. 砂砾岩储集层微观非均质性定量评价——以柴达木盆地昆北油田为例[J]. 岩性油气藏, 2018, 30(3): 35-42.
[7] 孙春燕, 胡明毅, 胡忠贵. 川东北达川-万县地区下三叠统飞仙关组层序地层研究[J]. 岩性油气藏, 2017, 29(4): 30-37.
[8] 武爱俊, 徐建永, 滕彬彬, 肖伶俐, 康波, 李凡异, 印斌浩. “动态物源”精细刻画方法与应用——以琼东南盆地崖南凹陷为例[J]. 岩性油气藏, 2017, 29(4): 55-63.
[9] 吴冬, 朱筱敏, 刘常妮, 南征兵, 史艳丽. Fula凹陷中央转换带对岩性油藏勘探的意义——以Abu Gabra组为例[J]. 岩性油气藏, 2017, 29(4): 64-72.
[10] 李晨, 樊太亮, 高志前, 钱小会, 傅巍. 冲积扇高分辨率层序地层分析——以辽河坳陷曙一区杜84块SAGD开发区馆陶组为例[J]. 岩性油气藏, 2017, 29(3): 66-75.
[11] 陈锋,朱筱敏,葛家旺,黎明,吴陈冰洁. 珠江口盆地陆丰南地区文昌组层序地层及沉积体系研究[J]. 岩性油气藏, 2016, 28(4): 67-77,94.
[12] 孟 昊,钟大康,朱筱敏,刘自亮,廖纪佳,张修强 . 鄂尔多斯盆地陇东地区延长组 LSC3 层序格架与沉积相[J]. 岩性油气藏, 2016, 28(1): 77-87.
[13] 刘苍宇,辛仁臣. ΔlgR 方法在深水沉积物层序分析中的应用----以松辽盆地古龙凹陷古57 井青山口组为例[J]. 岩性油气藏, 2015, 27(5): 30-36.
[14] 吴 冬,朱筱敏,朱世发,张厚和,赵东娜,李 维. 南沙万安盆地新生界层序特征和主控因素[J]. 岩性油气藏, 2015, 27(2): 46-54.
[15] 姚泾利,楚美娟,白嫦娥,袁晓明,郭正权. 鄂尔多斯盆地延长组长 8 2 小层厚层砂体沉积特征及成因分析[J]. 岩性油气藏, 2014, 26(6): 40-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .