岩性油气藏 ›› 2017, Vol. 29 ›› Issue (6): 108–118.doi: 10.3969/j.issn.1673-8926.2017.06.014

• 油气田开发 • 上一篇    下一篇

页岩气藏表观渗透率和综合渗流模型建立

张烈辉, 单保超, 赵玉龙, 郭晶晶, 唐洪明   

  1. 油气藏地质及开发工程国家重点实验室·西南石油大学, 成都 610500
  • 收稿日期:2017-03-06 修回日期:2017-06-15 出版日期:2017-11-21 发布日期:2017-11-21
  • 作者简介:张烈辉(1967-),男,博士,教授,博士生导师,主要从事复杂油气藏渗流、试井及数值模拟等方面的教学和科研工作。地址:(610500)四川省成都市新都区新都大道8号。Email:zhangliehui@vip.163.com。
  • 基金资助:
    国家自然科学基金项目"致密气藏储层干化、提高气体渗流能力的基础研究"(编号:51534006)、"多场多尺度耦合作用下页岩气藏体积压裂水平井非线性渗流理论研究"(编号:51404206)、"页岩气储层纳米尺度非均质性研究"(编号:51674211)和"基于边界元法的页岩气藏缝网多段压裂水平井不稳定渗流理论研究"(编号:5170427)联合资助

Establishment of apparent permeability model and seepage flow model for shale reservoir

ZHANG Liehui, SHAN Baochao, ZHAO Yulong, GUO Jingjing, TANG Hongming   

  1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
  • Received:2017-03-06 Revised:2017-06-15 Online:2017-11-21 Published:2017-11-21

摘要: 页岩储层结构复杂,多尺度效应明显,存在黏性流动、滑脱效应、Knudsen扩散以及表面扩散等多重运移机制。利用Knudsen数划分流态,绘制了考虑真实气体效应的流态图版。考虑多重运移机制,建立了页岩气藏表观渗透率模型;在此基础上综合考虑吸附解吸以及溶解气扩散影响,建立了页岩气藏多重介质不稳定渗流数学模型,明确了不同运移机制对页岩气藏非稳态产能的影响。结果表明:不同运移机制之间既相互联系又相互制约;Knudsen扩散和表面扩散均通过改变表观渗透率大小,对生产中期阶段的气体流动能力产生重要影响;溶解气和吸附气均是页岩气的重要赋存形式,是开发过程中自由气的补充,对气井生产中晚期非稳态产能具有显著影响;溶解气与吸附气能够增加气藏的累产气量,减缓气藏压力的下降速度。

关键词: 层序地层, 构造转换带, 勘探目标, Abu Gabra组, Muglad盆地, 苏丹

Abstract: Multi-scaled effects of gas seepage behavior,such as slippage effect,Knudsen diffusion and surface diffusion, can lead to non-Darcy flow in shale formation. A flow chart considering real gas effects was plotted according the value of Knudsen number,and a comprehensive apparent permeability model was established considering different flow mechanisms. Flux contribution of slip viscous flow,Knudsen diffusion and surface diffusion were discussed under different pore radii and pressure conditions. Using the apparent permeability model,a comprehensive flow continual equation was built considering adsorption/desorption effect and dissolved gas diffusion in Kerogen. The results show that nonlinear flow effect is obvious in low pressure and small pore conditions. The main mass transfer mechanism is different under different conditions. Knudsen and surface diffusion mainly affect the middle flow period through changing the apparent permeablity. Dissolved gas in Kerogen and adsorbed gas are important occurrence of shale gas and supplement of free gas during reservoir development,and they have a significant influence on unstable productivity during middle-later flow period. Dissolved gas and adsorbed gas can increase the cumulative gas production, slow down gas reservoir pressure drop.

Key words: sequence stratigraphy, structural transfer zone, exploration target, Abu Gabra Formation, Muglad Basin, Sudan

中图分类号: 

  • TE312
[1] 姜瑞忠, 汪洋, 贾俊飞, 等.页岩储层基质和裂缝渗透率新模型研究.天然气地球科学, 2014, 25(6):934-939. JIANG R Z, WANG Y, JIA J F, et al. The new model for matrix and fracture permeability in shale reservoir. Natural Gas Geoscience, 2014, 25(6):934-939.
[2] 于荣泽, 张晓伟, 卞亚南, 等.页岩气藏流动机理与产能影响因素分析.天然气工业, 2012, 32(9):10-15. YU R Z, ZHANG X W, BIAN Y N, et al. Flow mechanism of shale gas reservoirs and influential factors of their productivity. Natural Gas Industry, 2012, 32(9):10-15.
[3] 李勇明, 姚锋盛, 赵金洲, 等.页岩气藏纳米孔隙微观渗流动态研究. 科学技术与工程, 2013, 13(10):2657-2661. LI Y M, YAO F S, ZHAO J Z, et al. Shale gas reservoir nanometerpore microscopic seepage dynamic research. Science Technology and Engineering, 2013, 13(10):2657-2661.
[4] SWAMI V, SETTARI A T. A numerical model for multi-mechanism flow in shale gas reservoirs with application to laboratory scale testing. SPE 164840, 2013.
[5] SWAMI V, SETTARI A T. A pore scale gas flow model for shale gas reservoir. SPE 155756, 2012.
[6] SHABRO V, TORRES-VERDIN C, SEPEHRNOORI K. Forecasting gas production in organic shale with the combined numerical simulation of gas diffusion in Kerogen, Langmuir desorption from surfaces, and advection in nanopores. SPE 159250, 2012.
[7] 郭为, 熊伟, 高树生, 等.页岩纳米级孔隙气体流动特征.石油钻采工艺, 2012, 34(6):57-60. GUO W, XIONG W, GAO S S, et al. Gas flow characteristics in shales nanopores. Oil Drilling & Production Technology, 2012, 34(6):57-60.
[8] 夏阳, 金衍, 陈勉.页岩气渗流过程中的多场耦合机理.中国科学:物理学力学天文学, 2015, 45(9):30-43. XIA Y, JIN Y, CHEN M. The coupling of multi-physics for gas flow in shale reservoirs. Scientia Sinica:Physica, Mechanica, Astronomica, 2015, 45(9):30-43.
[9] 夏阳, 金衍, 陈勉, 等.页岩气渗流数学模型.科学通报, 2015, 60(24):2259-2271. XIA Y, JIN Y, CHEN M, et al. Gas flow in shale reservoirs. Chinese Science Bulletin, 2015, 60(24):2259-2271.
[10] 刘圣鑫, 钟建华, 刘晓光, 等.致密多孔介质气体运移机理.天然气地球科学, 2014, 25(10):1520-1528. LIU S X, ZHONG J H, LIU X G, et al. Gas transport mechanism in tight porous media. Natural Gas Geoscience, 2014, 25(10):1520-1528.
[11] 郭肖, 任影, 吴红琴.考虑应力敏感和吸附的页岩表观渗透率模型.岩性油气藏, 2015, 27(4):109-112. GUO X, REN Y, WU H Q. Apparent permeability model of shale gas considering stress sensitivity and adsorption. Lithologic Reservoirs, 2015, 27(4):109-112.
[12] 朱维耀, 马千, 邓佳, 等.纳微米级孔隙气体流动数学模型及应用. 北京科技大学学报, 2014, 36(6):709-715. ZHU W Y, MA Q, DENG J, et al. Mathematical model and application of gas flow in nano-micron pores. Journal of University of Science and Technology Beijing, 2014, 36(6):709-715.
[13] WU K L, CHEN Z X, LI X F, et al. A model for multiple transport mechanisms through nanopores of shale gas reservoirs with real gas effect-adsorption-mechanic coupling. International Journal of Heat and Mass Transfer, 2016, 93:408-426.
[14] WU K L, LI X F, WANG C C, et al. Apparent permeability for gas flow in shale reservoirs coupling effects of gas diffusion and desorption. Unconventional Resources Technology Conference, Denver, Colorado, 2014.
[15] 岳陈军, 张烈辉, 赵玉龙, 等.考虑表面扩散的页岩气渗透率两区复合解析模型. 水动力学研究与进展:A辑, 2016, 31(3):362-371. YUE C J, ZHANG L H, ZHAO Y L, et al. A dual-zone composite analytic model for shale gas permeability considering surface diffusion. Chinese Journal of Hydrodynamics, 2016, 31(3):362-371.
[16] 盛茂, 李根生, 黄中伟, 等.考虑表面扩散作用的页岩气瞬态流动模型.石油学报, 2014, 35(2):347-352. SHENG M, LI G S, HUANG Z W, et al. Shale gas transient flow model with effects of surface diffusion. Acta Petrolei Sinica, 2014, 35(2):347-352.
[17] 查文舒, 李道伦, 王磊, 等.不同滑移边界下的页岩渗透率修正模型.力学学报, 2015, 47(6):923-931. ZHA W S, LI D L, WANG L, et al. Shale permeability correction models under different slip boundary conditions. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6):923-931.
[18] 张梦黎, 郭肖, 刘洪.多尺度孔隙介质视渗透率模型.石油化工应用, 2016, 35(4):18-22. ZHANG M L, GUO X, LIU H. The model for apparent permeability in multi-scale porous medium. Petrochemical Industry Application, 2016, 35(4):18-22.
[19] 宋付权, 刘禹, 王常斌.微纳米尺度下页岩气的质量流量特征分析.水动力学研究与进展:A辑, 2014, 29(2):150-156. SONG F Q, LIU Y, WANG C B. Analysis of mass flow rate characteristics of the shale gas in micro/nano scale. Chinese Journal of Hydrodynamics, 2014, 29(2):150-156.
[20] ZAMIRIAN M, AMINIAN K, FATHI E, et al. A fast and robust technique for accurate measurement of the organic-rich shales characteristics under steady-state conditions. SPE 171018, 2014.
[21] JAVADPOUR F. Nanopores and apparent permeability of gas flow in mudrocks(shales and siltstone). Journal of Canadian Petroleum Technology, 2009, 48(8):16-21.
[22] JAVADPOUR F, FISHER D, UNSWORTH M. Nanoscale gas flow in shale gas sediments. Journal of Canadian Petroleum Technology, 2007, 46(10):55-61.
[23] CIVAN F. Effective correlation of apparent gas permeability in tight porous media. Transport in Porous Media. 2010, 82(2):375-384.
[24] MICHEL G G, SIGAL R, CIVAN F, et al. Parametric investigation of shale gas production considering nano-scale pore size distribution, formation factor, and non-darcy flow mechanisms. SPE 147438, 2011.
[25] KLINKENBERG L J. The permeability of porous media to liquids and gases. Socar Proceeding, 1941, 2(2):200-213.
[26] JONES F O, OWENS W W. A laboratory study of low-permeability gas sands. Journal of Petroleum Technology, 1980, 32(9):1631-1640.
[27] SAMPATH K, KEIGHIN C W. Factors affecting gas slippage in tight sandstones of Cretaceous age in the Ninta Basin. Journal of Petroleum Technology, 1982, 34(11):2715-2720.
[28] ERTEKIN T, KING G R, SCHWERER F C. Dynamic gas slippage:a unique dual-mechanism approach to the flow of gas in tight formations. SPE Formation and Evaluation, 1986, 1(1):43-52.
[29] FLORENCE F, RUSHING J, NEWSHAM K E, et al. Improved permeability prediction relations for low permeability sands. SPE 107954, 2007.
[30] AUBERT C, COLIN S. High-order boundary conditions for gaseous flow in rectangular microdusts. Microscale Thermalphysical Engineering, 2001, 5(1):41-54.
[31] 谢翀, 樊菁. Navier-Stokes方程二阶速度滑移边界条件的检验.力学学报, 2007, 39(1):1-6. XIE C, FAN J. Assessment of second-order velocity-slip boundary conditions of the Navier-Stokes equations. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1):1-6.
[32] BESKOK A, KARNIADAKIS G E. A model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermalphysical Engineering, 1999, 3(1):43-77.
[33] MAXWELL J C. On stresses in rarified gases arising from inequalities of temperature. Philosophical Transactions of the Royal Society of London, 1879, 170:231-256.
[34] HSIA Y T, DOMOTO G A. An experimental investigation of molecular rarefaction effects in gas lubricated bearing at ultralow clearances. Journal of Lubrication Technology, 1983, 105(1):120-129.
[35] YIN-KWEE N E, LIU N Y. A multicoefficient slip-corrected reynolds equation for micro-thin film gas lubrication. International Journal of Rotating Machinery, 2005, 2:105-111.
[36] 寇雨, 周文, 赵毅楠, 等.鄂尔多斯盆地长7油层组页岩吸附特征与类型及吸附气量影响因素. 岩性油气藏, 2016, 28(6):52-57. KOU Y, ZHOU W, ZHAO Y N, et al. Adsorption characteristics, types and influencing factors of Chang 7 shale of Triassic Yanchang Formation in Ordos Basin. Lithologic Reservoirs, 2016, 28(6):52-57.
[37] DARABI H, ETTEHAD A, JAVADPOUR F, et al. Gas flow in ultra-tight shale strata. Journal of Fluid Mechanics, 2012, 710(12):641-658.
[38] CAO C, LI T T, ZHAO Y P, et al. Multi-field coupling permeability model in shale gas reservoir. SPE 184033, 2017.
[39] ZHAO Y L, ZHANG L H, XIONG Y, et al. Pressure response and production performance for multi-fractured horizontal wells with complex seepage mechanism in box-shaped shale gas reservoir. Journal of Natural Gas Science and Engineering, 2016, 32:66-80.
[40] IGWE G J I. Gas transport mechanism and slippage phenomenon in porous media. SPE 16479, 1987.
[41] RUTHVEN D M. Principles of adsorption & adsorption processes. New York:John Wiley and Sons, 1984:80-109.
[42] 何映颉, 杨洋, 张廷山, 等.石墨狭缝吸附页岩气的分子模拟. 岩性油气藏, 2016, 28(6):88-94. HE Y J, YANG Y, ZHANG T S, et al. Molecular simulation of shale gas adsorption in graphite slit-pores. Lithologic Reservoirs, 2016, 28(6):88-94.
[43] 段永刚, 曹廷宽, 杨小莹, 等.页岩储层纳米孔隙流动模拟研究.西南石油大学学报(自然科学版), 2015, 37(3):63-68. DUAN Y G, CAO T K, YANG X Y, et al. Simulation of gas flow in nano-scale pores of shale gas deposits. Journal of Southwest Petroleum University(Science & Technology Edition), 2015, 37(3):63-68.
[44] BRUNAUER S, EMMETT P H, TELLER E. Adsorption of gases in multimolecular layers. Journal of American Chemical Society, 1938, 60(29):309-319.
[1] 史忠生, 庞文珠, 陈彬滔, 薛罗, 赵艳军, 马轮. 南苏丹Melut盆地下组合近源白垩系成藏模式与勘探潜力[J]. 岩性油气藏, 2020, 32(5): 23-33.
[2] 罗晓彤, 文华国, 彭才, 李云, 赵研. 巴西桑托斯盆地L油田BV组湖相碳酸盐岩沉积特征及高精度层序划分[J]. 岩性油气藏, 2020, 32(3): 68-81.
[3] 赵汉卿, 温慧芸, 穆朋飞, 李超, 吴穹螈. 垦利A油田沙三上段近源辫状河三角洲沉积特征[J]. 岩性油气藏, 2019, 31(3): 37-44.
[4] 洪亮, 陈彬滔, 刘雄志, 惠学智, 房乃珍, 苏玉平. Muglad盆地Kaikang槽西斜坡沉积演化及其油气地质意义[J]. 岩性油气藏, 2019, 31(2): 8-15.
[5] 芮志锋, 林畅松, 杜家元, 丁琳, 李潇. 关键层序界面识别及其在岩性油气藏勘探中的意义——以惠州凹陷珠江组为例[J]. 岩性油气藏, 2019, 31(1): 96-105.
[6] 杨应, 杨巍, 朱仕军. 基于EEMD的高分辨率层序地层划分方法[J]. 岩性油气藏, 2018, 30(5): 59-67.
[7] 王国林, 史忠生, 赵艳军, 陈彬滔, 薛罗. 南苏丹Melut盆地北部地区岩性油藏成藏条件及勘探启示[J]. 岩性油气藏, 2018, 30(4): 37-45.
[8] 孙春燕, 胡明毅, 胡忠贵. 川东北达川-万县地区下三叠统飞仙关组层序地层研究[J]. 岩性油气藏, 2017, 29(4): 30-37.
[9] 武爱俊, 徐建永, 滕彬彬, 肖伶俐, 康波, 李凡异, 印斌浩. “动态物源”精细刻画方法与应用——以琼东南盆地崖南凹陷为例[J]. 岩性油气藏, 2017, 29(4): 55-63.
[10] 吴冬, 朱筱敏, 刘常妮, 南征兵, 史艳丽. Fula凹陷中央转换带对岩性油藏勘探的意义——以Abu Gabra组为例[J]. 岩性油气藏, 2017, 29(4): 64-72.
[11] 李晨, 樊太亮, 高志前, 钱小会, 傅巍. 冲积扇高分辨率层序地层分析——以辽河坳陷曙一区杜84块SAGD开发区馆陶组为例[J]. 岩性油气藏, 2017, 29(3): 66-75.
[12] 陈锋,朱筱敏,葛家旺,黎明,吴陈冰洁. 珠江口盆地陆丰南地区文昌组层序地层及沉积体系研究[J]. 岩性油气藏, 2016, 28(4): 67-77,94.
[13] 孟 昊,钟大康,朱筱敏,刘自亮,廖纪佳,张修强 . 鄂尔多斯盆地陇东地区延长组 LSC3 层序格架与沉积相[J]. 岩性油气藏, 2016, 28(1): 77-87.
[14] 刘苍宇,辛仁臣. ΔlgR 方法在深水沉积物层序分析中的应用----以松辽盆地古龙凹陷古57 井青山口组为例[J]. 岩性油气藏, 2015, 27(5): 30-36.
[15] 吴 冬,朱筱敏,朱世发,张厚和,赵东娜,李 维. 南沙万安盆地新生界层序特征和主控因素[J]. 岩性油气藏, 2015, 27(2): 46-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .