岩性油气藏 ›› 2018, Vol. 30 ›› Issue (5): 82–90.doi: 10.12108/yxyqc.20180510

• 技术方法 • 上一篇    下一篇

基于KT模型流体替换的岩石物理参数反演方法

彭达1,2, 肖富森1, 冉崎1, 谢冰1, 陈骁1, 张福宏1, 陈康1, 许翔1   

  1. 1. 中国石油西南油气田公司 勘探开发研究院, 成都 610041;
    2. 西南石油大学 博士后科研流动站, 成都 610500
  • 收稿日期:2017-12-15 修回日期:2018-03-02 出版日期:2018-09-14 发布日期:2018-09-14
  • 作者简介:彭达(1987-),博士,工程师,主要从事地震岩石物理学和地震属性分析技术的研究工作。地址:(610041)四川省成都市高新区天府大道北段12号石油科技大厦。Email:pengda2016@petrochina.com.cn。
  • 基金资助:
    “十三五”国家重大科技专项“四川盆地大型碳酸盐岩气田开发示范工程”(编号:2016ZX05052)和中国石油天然气股份有限公司重大科技专项“西南油气田天然气上产300亿m3关键技术研究与应用”(编号:2016E-0604)联合资助

Inversion of rock physics parameters based on KT model fluid substitution

PENG Da1,2, XIAO Fusen1, RAN Qi1, XIE Bing1, CHEN Xiao1, ZHANG Fuhong1, CHEN Kang1, XU Xiang1   

  1. 1. Research Institute of Exploration and Development, PetroChina Southwest Oil & Gas Company, Chengdu 610015, China;
    2. Post-Doctoral Mobile Station, Southwest Petroleum University, Chengdu 610500, China
  • Received:2017-12-15 Revised:2018-03-02 Online:2018-09-14 Published:2018-09-14

摘要: 岩石物理模型中包含了很多不同的岩石物理参数,一般可以通过测井资料或者实验室资料获得,但是诸如矿物基质弹性模量以及孔隙几何形状这些参数,不能从实测数据中直接获取,必须通过反演得到,因此,研究获取这些岩石物理参数的反演方法十分必要。对于砂岩油气储层,利用3种孔隙纵横比模拟岩石的孔隙结构,引用Biot系数公式确定矿物基质弹性模量的变化范围,并结合模拟退火优化算法提出了一种基于KT模型流体替换的岩石物理参数反演方法。该方法的最大优势是能够在只知道常规测井数据的情况下,直接反演出岩石的矿物基质弹性模量和孔隙纵横比谱。针对实验室测试的42块细砂岩样品,利用该方法精确地获取了所有样品的矿物基质体积模量、剪切模量以及孔隙纵横比谱。分析反演获取的多种岩石物理参数表明:孔隙纵横比谱对岩石的弹性性质影响最大;孔隙纵横比谱可用来描述储层岩石的孔隙结构;利用3种孔隙纵横比的KT模型进行流体替换模拟的适用性很好;裂缝孔隙的体积分数对岩石弹性模量的敏感性最高。研究结果可为叠前地震属性反演和叠后储层定量预测提供参考。

关键词: KT模型, 流体替换, 岩石物理参数, 矿物基质弹性模量, 孔隙纵横比谱

Abstract: There are many rock physics parameters in rock physics model,some parameters are directly obtained from log data or lab data,and the others are indirectly obtained by inversion,such as mineral matrix elastic modulus and pore geometry. It's important to investigate estimation methods for these rock physics parameters. For the sandstone reservoir,three different pore aspect ratios were used to describe the pore structure of sandstone,Biot's coefficient was used to determine the variation range of mineral matrix elastic modulus,and combined with simulated annealing simulated annealing algorithm,an inversion method for estimating rock physics parameters based on KT model fluid substitution was proposed. The mineral matrix bulk and shear modulus of 42 sandstone samples were inversed,and their pore aspect ratio spectrum were inversed simultaneously. The results show that:pore aspect spectrum has a great effect on rock elastic properties;pore aspect spectrum can be used to depict pore structure and diagenesis;using KT model with three pore aspect ratios to carry out fluid substitution simulation has a good adaptability;percentages of crack pores have a high sensitivity to rock elastic modulus.

Key words: KT model, fluid substitution, rock physics parameters, mineral matrix elastic modulus, pore aspect ratios spectrum

中图分类号: 

  • P315
[1] BIOT M A. Theory of propagation of elastic waves in a fluid saturated porous solid. Ⅰ:Low frequency range,and Ⅱ:Higherfrequency range. Journal of the Acoustical Society of America, 1956,28(2):168-196.
[2] GASSMANN F. Elastic waves through a packing of spheres. Geophysics,1951,16(4):673-682.
[3] AMENT W. Sound propagation in gross mixtures. Journal of the Acoustical Society of America,1953,25(4):638-641.
[4] ESHELBY J D. The determination of the elastic field of an ellipsoidal inclusion,and related problems. Proceedings of the Royal Society of London,1957,A241:376-396.
[5] WALSH J B. The effect of cracks on the compressibility of rock. Journal of Geophysical Research,1965,70(2):381-389.
[6] WU T T. The effect of inclusion shape on the elastic moduli of a two-phase material. International Journal of Solids and Structures,1966,2(1):1-8.
[7] KUSTER G T,TOKSöZ M N. Velocity and attenuation of seismic waves in two-phase media. Geophysics,1974,39(5):587-606.
[8] O'CONNELL R J,BUDIANSKY B. Seismic velocities in dry and saturated cracked solids. Journal of Geophysical Research, 1974,79(35):4626-4627.
[9] BERRYMAN J G. Long-wavelength propagation in composite elastic media. Journal of the Acoustical Society of America, 1980,68(6):1809-1831.
[10] ZIMMERMAN R W. The elastic moduli of a solid with spherical pores:New self-consistent method. International Journal of Rock Mechanics and Mining Sciences,Geomechanics Abstracts, 1984,21(6):339-343.
[11] WALTON K. The effective elastic moduli of a random packing of spheres. Mech Phys Solids,1987,35(2):213-226.
[12] DIGBY P J. The effective elastic moduli of porous granular rocks. Journal of Applied Mechanics,1981,48(4):803-808.
[13] NORRIS A N,JOHNSON D L. Nonlinear elasticity of granular media. Physica B Physics of Condensed Matter,2000,279(1):134-138.
[14] MINDLIN R D. Compliance of elastic bodies in contact. Journal of Applied Mechanics,1949,16(3):259-268.
[15] DVORKIN J,NUR A,YIN H. Effective properties of cemented granular material. Mechanics of Materials,1994,18(4):351-366.
[16] WANG Z J. Fundamentals of seismic rock physics. Geophysics, 2001,66(2):398-412.
[17] MAVKO G,MUKERJI T,DVORKIN J. The rock physics handbook. Cambridge:Cambridge University Press,1998:260-263.
[18] VOIGT W. Textbook of crystal physics. Leipzig:Teubner,1910:100-105.
[19] REUSS A. Calculation of the yield point from mixed crystals. Math Mech,1929,9(5):49-58.
[20] HILL R. The elastic behavior of crystalline aggregate. Proceedings of the Physical Society,1952,65(5):349-354.
[21] HASHIN Z,SHTRIKMAN S. A variational approach to the elastic behavior of multiphase materials. Journal of the Mechanics & Physics of Solids,1963,11(2):127-140.
[22] 云美厚,易维启,庄红艳.砂岩的弹性模量与孔隙率、泥质含量、有效压力和温度的经验关系.石油地球物理勘探,2001, 36(3):308-314. YUN M H,YI W Q,ZHUANG H Y. Empirical relationship among elastic modulus,porosity,clay content,effective pressure and temperature in dry core sample of sandstone. Oil Geophysical Prospecting,2001,36(3):308-314.
[23] 张金强,曲寿利,孙建国,等.一种碳酸盐岩储层中流体替换的实现方法.石油地球物理勘探,2010,45(3):406-409. ZHANG J Q,QU S L,SUN J G,et al. A fluid substitution realization method in carbonate reservoir. Oil Geophysical Prospecting,2010,45(3):406-409.
[24] LIN K,XIONG X J,YANG X,et al. Self-adapting extraction of matrix mineral bulk modulus and verification of fluid substitution. Applied Geophysics,2011,8(2):110-116.
[25] 胡晓丽,谭大龙.孔隙形状对AVO响应影响的研究.岩性油气藏,2010,22(3):114-117. HU X L,TAN D L. Influence of pore shape on AVO response. Lithologic Reservoirs,2010,22(3):114-117.
[26] 刘航宇,田中元,徐振永.基于分形特征的碳酸盐岩储层孔隙结构定量评价.岩性油气藏,2017,29(5):97-105. LIU H Y,TIAN Z Y,XU Z Y. Quantitative evaluation of carbonate reservoir pore structure based on fractal characteristics. Lithologic Reservoirs,2017,29(5):97-105.
[27] 葛小波,李吉君,卢双舫,等. 基于分形理论的致密砂岩储层微观孔隙结构表征——以冀中坳陷致密砂岩储层为例.岩性油气藏,2017,29(5):106-112. GE X B,LI J J,LU S F,et al. Fractal characteristics of tight sandstone reservoir using mercury intrusion capillary pressure:a case of tight sandstone reservoir in Jizhong Depression. Lithologic Reservoirs,2017,29(5):106-112.
[28] 闫建平,梁强,耿斌,等.低渗透砂岩微孔特征与孔隙结构类型的关系——以东营凹陷南斜坡沙四段为例.岩性油气藏, 2017,29(3):18-26. YAN J P,LIANG Q,GENG B,et al. Relationship between micropore characteristics and pore structure of Low permeability sandstone:a case of the fourth member of Shahejie Formation in southern slope of Dongying Sag. Lithologic Reservoirs,2017, 29(3):18-26.
[29] BERRYMAN J G. Mixture theories for rock properties. Washington,D C:American Geophysical Union,1995:205-228.
[30] CHENG C H,TOKSöZ M N. Inversion of seismic velocities for the pore aspect ratio spectrum of a rock. Journal of Geophysical Research,1979,84(B13):7533-7543.
[31] KRIEF M,GARAT J,STELLINGWERFF J,et al. A petrophysical interpretation using the velocities of P and S waves(fullwaveform sonic). The Log Analyst,1990,31(6):355-369.
[32] 林凯,贺振华,熊晓军,等.基于基质矿物模量自适应提取横波速度反演方法.石油地球物理勘探,2013,48(2):262-267. LIN K,HE Z H,XIONG X J,et al. Inversion of shear wave velocity based on self-adapting extraction of matrix modulus. Oil Geophysical Prospecting,2013,48(2):262-267.
[33] SALEH A A,CASTAGNA J P. Revisiting the Wyllie time average equation in the case of near spherical pores. Geophysics,2004, 69(1):45-55.
[34] ZHANG J J,BENTLEY L R. Pore geometry and elastic moduli in sandstones. The Crewes Research Report,2003,15(1):1-20.
[1] 冯小英,秦凤启,唐钰童,刘 慧,王 亚 . 沁水盆地煤层含气后的 AVO 响应特征[J]. 岩性油气藏, 2015, 27(4): 103-108.
[2] 李宁,苏云,田军,秦广胜. AVO 流体反演技术在川东北某区烃类检测中的应用[J]. 岩性油气藏, 2012, 24(5): 102-106.
[3] 刘晓鹏,欧阳诚,彭宇,何葵. 岩石物理参数分析在苏59 区块的应用[J]. 岩性油气藏, 2012, 24(4): 80-84.
[4] 胡晓丽,谭大龙. 孔隙形状对AVO 响应影响的研究[J]. 岩性油气藏, 2010, 22(3): 114-117.
[5] 辛广柱, 刘 赫, 彭建亮, 邵红君. 地质因素和资料因素对地震属性的影响[J]. 岩性油气藏, 2007, 19(1): 105-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李在光, 李琳. 以井数据为基础的AutoCAD 自动编绘图方法[J]. 岩性油气藏, 2007, 19(2): 84 -89 .
[2] 程玉红, 郭彦如, 郑希民, 房乃珍, 马玉虎. 井震多因素综合确定的解释方法与应用效果[J]. 岩性油气藏, 2007, 19(2): 97 -101 .
[3] 刘俊田,靳振家,李在光,覃新平,郭 林,王 波,刘玉香. 小草湖地区岩性油气藏主控因素分析及油气勘探方向[J]. 岩性油气藏, 2007, 19(3): 44 -47 .
[4] 商昌亮,付守献. 黄土塬山地三维地震勘探应用实例[J]. 岩性油气藏, 2007, 19(3): 106 -110 .
[5] 李景明, 李东旭, 杨冬, 马硕鹏. 中国岩性地层气藏的勘探前景[J]. 岩性油气藏, 2007, 19(4): 1 -8 .
[6] 王昌勇, 郑荣才, 王建国, 曹少芳, 肖明国. 准噶尔盆地西北缘八区下侏罗统八道湾组沉积特征及演化[J]. 岩性油气藏, 2008, 20(2): 37 -42 .
[7] 王克, 刘显阳, 赵卫卫, 宋江海, 时振峰, 向惠. 济阳坳陷阳信洼陷古近纪震积岩特征及其地质意义[J]. 岩性油气藏, 2008, 20(2): 54 -59 .
[8] 孙洪斌, 张凤莲. 辽河坳陷古近系构造-沉积演化特征[J]. 岩性油气藏, 2008, 20(2): 60 -65 .
[9] 李传亮. 地层抬升会导致异常高压吗?[J]. 岩性油气藏, 2008, 20(2): 124 -126 .
[10] 魏钦廉,郑荣才,肖玲,马国富,窦世杰,田宝忠. 阿尔及利亚438b 区块三叠系Serie Inferiere 段储层平面非均质性研究[J]. 岩性油气藏, 2009, 21(2): 24 -28 .