岩性油气藏 ›› 2018, Vol. 30 ›› Issue (6): 109–116.doi: 10.12108/yxyqc.20180613

• 油气田开发 • 上一篇    下一篇

致密油储层成岩相类型及其对产能的影响——以鄂尔多斯盆地姜家川地区长8储层为例

徐波1,2, 王建3, 于乐丹1,2, 王凯泽1,2, 董凤娟1,2, 刘峰1,2   

  1. 1. 西安石油大学 石油工程学院, 西安 710065;
    2. 陕西省油气田特种增产技术重点实验室, 西安 710065;
    3. 中国石化胜利油田分公司 勘探开发研究院, 山东 东营 257015
  • 收稿日期:2018-03-30 修回日期:2018-06-02 出版日期:2018-11-16 发布日期:2018-11-16
  • 作者简介:徐波(1968-),男,博士,教授,主要从事油气田地质与开发方面的教学与科研工作。地址:(710065)陕西省西安市雁塔区电子二路18号西安石油大学石油工程学院。Email:xsyuxb@126.com。
  • 基金资助:
    “十三五”国家重大科技专项“复杂断块油田提高采收率技术”(编号:2016ZX05011-002)和国家自然科学基金项目“基于多源信息和智能计算的钻井异常自适应预警方法研究”(编号:51574194)联合资助

Diagenetic facies types of tight reservoir and its effects on productivity: a case of Chang 8 reservoir in Jiangjiachuan area, Ordos Basin

XU Bo1,2, WANG Jian3, YU Ledan1,2, WANG Kaize1,2, DONG Fengjuan1,2, LIU Feng1,2   

  1. 1. Xi'an Shiyou University, Xi'an 710065, China;
    2. Shaanxi Key Laboratory of Advanced Stimulation Technology for Oil & Gas Reservoirs, Xi'an 710065, China;
    3. Research Institute of Exploration and Development, Shengli Oilfield Company, Sinopec, Dongying 257015, Shandong, China
  • Received:2018-03-30 Revised:2018-06-02 Online:2018-11-16 Published:2018-11-16

摘要: 鄂尔多斯盆地姜家川地区长8油藏属于近源富集成藏,是特低孔、超低渗的典型致密油藏,分析储层成岩相类型并寻找受成岩相控制的优质储集体,可为有利储层预测和致密油藏高效开发提供依据。利用铸体薄片、扫描电镜、X射线衍射、阴极发光等手段,对目的层岩石学特征、成岩作用类型和成岩期次进行了研究,结合油田生产动态资料,分析了不同成岩相的特征、差异及其对产能的影响,预测了有利成岩相带分布。结果表明:长8储层主要为岩屑长石砂岩,压实作用和胶结作用使砂岩的原生孔隙结构遭到严重破坏,铁方解石、铁白云石等含铁碳酸盐的胶结作用是导致储层致密的决定性因素,成岩阶段中的溶蚀作用有利于改善储层的孔渗性能;主要成岩阶段处于中成岩阶段A期的晚期,同时部分区域进入中成岩阶段B期的早期,主要发育绿泥石膜胶结形成的残余粒间孔+长石溶孔相、绿泥石膜和伊利石胶结形成的残余粒间孔+长石溶孔相、伊利石胶结形成的长石溶孔相、碳酸盐胶结相等4类成岩相,其中绿泥石膜胶结形成的残余粒间孔+长石溶孔相物性最好、产油量最高,该成岩相分布区储集层具有良好的储渗能力。研究结果可为该区有利勘探区预测提供参考。

关键词: 成岩相, 成岩作用, 非均质性, 产能, 长8致密砂岩油藏, 鄂尔多斯盆地

Abstract: Chang 8 reservoir in Jiangjiachuan area in southeast Ordos Basin belongs to near-source hydrocarbon accumulation without long-distance hydrocarbon migration. It is a typical tight oil sandstone reservoir with extralow porosity and ultra-low permeability. It is helpful for reservoir exploration and development through analyzing reservoir diagenetic facies and looking for favorable belt controlled by diagenetic facies. The test and analysis data of casting thin slice, scanning electron microscope, XRD data and cathode luminescence were used to study petrology characteristics, diagenesis types and diagenetic period. Based on the data of oilfield production, the characteristics and differences of different diagenetic facies and their influences on productivity were analyzed, and the favorable diagenetic facies distribution was predicted. The results show that Chang 8 reservoir is mainly composed of lithic arkose sandstone. Compaction and cementation seriously destroyed the primary pore structure of sandstone. Cementation of iron calcite and ferric dolomite is the decisive factor for the tight of the reservoir, and the dissolution in the diagenetic stage is beneficial to the improvement of the porosity and permeability of the reservoir. Most of the reservoirs were under the middle diagenetic stage A, part reservoir is under the early diagenetic stage B. The diagenetic facies can be divided into four types, including intergranular pore and feldspar dissolution diagenetic phase formed by chlorite cementation, intergranular pore and feldspar dissolution diagenetic phase formed by chlorite and illite cementation, feldspar dissolution diagenetic phase formed by illite cementation, and carbonate cementation phase. The favorable belt with good physical properties and maximum oil production is considered as the intergranular pore and feldspar dissolution diagenetic phase formed by chlorite cementation. This research result can provide practical reference for favorable reservoir prediction and efficient development in the study area.

Key words: diagenetic facies, diagenesis, heterogeneity, productivity, Chang 8 tight sand reservoir, Ordos Basin

中图分类号: 

  • TE122.2
[1] RAILSBACK L B. Carbonate diagenetic facies in the Upper Pennaylvanian Dennis Formation in Lowa, Missiouri and Kansas. Journal of Sedimentary Petrology, 1984, 54(3):986-999.
[2] 石玉江, 肖亮, 毛志强, 等.低渗透砂岩储层成岩相测井识别方法及其地质意义——以鄂尔多斯盆地姬塬地区长8段储层为例. 石油学报, 2011, 32(5):820-828. SHI Y J, XIAO L, MAO Z Q, et al. An identification method for diagenetic facies with well logs and its geological significance in low-permeability sandstones:a case study on Chang 8 reservoirs in the Jiyuan region, Ordos Basin. Acta Petrolei Sinica, 2011, 32(5):820-828.
[3] 师调调, 孙卫, 张创, 等.鄂尔多斯盆地华庆地区延长组长6储层成岩相及微观孔隙结构.现代地质, 2012, 26(4):769-777. SHI T T, SUN W, ZHANG C, et al. Diagenetic facies and micropore structure of Chang 6 reservoir in Yanchang Formation, Huaqing area, Ordos Basin. Geoscience, 2012, 26(4):769-777.
[4] 师调调, 孙卫, 何生平, 等. 华庆地区延长组长6储层不同类型成岩相微观孔隙结构特征及生产动态分析. 兰州大学学报(自然科学版), 2012, 48(3):7-13. SHI T T, SUN W, HE S P, et al. Diagenetic facies and its micropore structure of Yanchang Formation Chang 6 reservoirs in Huaqing area. Journal of Lanzhou University(Natural Science), 2012, 48(3):7-13.
[5] 师调调.华庆地区长6储层微观孔隙结构及渗流特征研究. 西安:西北大学, 2012. SHI T T. The study on the micro-pore structure and percolation characteristics of Yanchang Formation Chang 6 reservoir in Huaqing area. Xi'an:Northwest university, 2012.
[6] 王猛, 曾明, 陈鸿傲, 等.储层致密化影响因素分析与有利成岩相带预测——以马岭油田长8油层组砂岩储层为例. 岩性油气藏, 2017, 29(1):59-70. WANG M, ZENG M, CHEN H A, et al. Influencing factors of tight reservoirs and favorable diagenetic facies:a case study of Chang 8 reservoir of the Upper Triassic Yanchang Formation in Maling Oilfield, Ordos Basin. Lithologic Reservoirs, 2017, 29(1):59-70.
[7] 谭开俊, 许多年, 尹路, 等.准噶尔盆地乌夏地区三叠系成岩相定量研究.岩性油气藏, 2011, 23(6):24-29. TAN K J, XU D N, YIN L, et al. Quantitative study on Triassic diagenetic facies in Wuxia area, Junggar Basin. Lithologic Reservoirs, 2011, 23(6):24-29.
[8] 邹才能, 陶士振, 周慧, 等.成岩相的形成、分类与定量评价方法.石油勘探与开发, 2008, 35(5):526-540. ZOU C N, TAO S Z, ZHOU H, et al. Genesis, classification and evaluation method of diagenetic facies. Petroleum Exploration and Development, 2008, 35(5):526-540.
[9] 赖锦, 王贵文, 王书南, 等.碎屑岩储层成岩相研究现状及进展.地球科学进展, 2013, 28(1):39-50. LAI J, WANG G W, WANG S N, et al. Research status and advances in the diagenetic facies of clastic reservoirs. Advances in Earth Science, 2013, 28(1):39-50.
[10] 吴立群, 焦养泉, 杨琴, 等.鄂尔多斯盆地富县地区延长组物源体系分析.沉积学报, 2010, 28(3):434-440. WU L Q, JIAO Y Q, YANG Q, et al. Provenance system analysis of Yanchang Formation in Fuxian area of Ordos Basin. Acta Sedimentologica Sinica, 2010, 28(3):434-440.
[11] 张文正, 杨华, 李善鹏.鄂尔多斯盆地长91湖相优质烃源岩成藏意义.石油勘探与开发, 2008, 35(5):557-562. ZHANG W Z, YANG H, LI S P. Hydrocarbon accumulation significance of Chang91 high-quality lacustrine source rocks of Yanchang Formation, Ordos Basin. Petroleum Exploration and Development, 2008, 35(5):557-562.
[12] 蔡劲, 王桂成, 张震.鄂尔多斯盆地富县地区延长组长8油藏油源对比研究. 沉积与特提斯地质, 2014, 34(4):68-74. CAI J, WANG G C, ZHANG Z. Oil-source rock correlation for the Chang-8 oil reservoirs in the Yanchang Formation, Fuxian region, Ordos Basin. Sedimentary Geology and Tethyan Geology, 2014, 34(4):68-74.
[13] 贺永红, 任战利, 陈占军, 等.富县探区长8段致密油藏特征及主控因素.西安科技大学学报, 2016, 36(3):393-399. HE Y H, REN Z L, CHEN Z J, et al. Chang 8 section tight oil reservoir characteristics and distributional controlling factors in Fuxian exploration area. Journal of Xi'an University of Science and Technology, 2016, 36(3):393-399.
[14] 曹跃, 刘延哲, 陈义国, 等. 鄂尔多斯盆地东韩油区延长组长7-长9油气成藏条件及主控因素. 岩性油气藏, 2018, 30(1):30-38. CAO Y, LIU Y Z, CHEN Y G, et al. Hydrocarbon accumulation conditions and main controlling factors of Chang 7-Chang 9 oil reservoirs of Yanchang Formation in Donghan region. Ordos Basin. Lithologic Reservoirs, 2018, 30(1):30-38.
[15] 唐建云, 王志维, 也尔哈那提·黑扎提, 等.鄂尔多斯盆地旬邑探区延长组烃源岩及原油地球化学特征.岩性油气藏, 2017, 29(2):107-116. TANG J Y, WANG Z W, YE'ERHANATI H Z T, et al. Source rocks and geochemical characteristics of crude oil of the Yanchang Formation in Xunyi exploration area, Ordos Basin. Lithologic Reservoirs, 2017, 29(2):107-116.
[16] 杨华, 李土祥, 刘显阳.鄂尔多斯盆地致密油、页岩油特征及资源潜力.石油学报, 2013, 34(1):1-11. YANG H, LI S X, LIU X Y. Characteristics and resource prospects of tight oil and shale oil in Ordos Basin. Acta Petrolei Sinica, 2013, 34(1):1-11.
[17] 宋岩, 李卓, 姜振学, 等.非常规油气地质研究进展与发展趋势.石油勘探与开发, 2017, 44(4):638-648. SONG Y, LI Z, JIANG Z X, et al. Progress and development trend of unconventional oil and gas geological research. Petroleum Exploration and Development, 2017, 44(4):638-648.
[18] 周晓峰, 丁黎, 杨卫国, 等.鄂尔多斯盆地延长组长8油层组砂岩中绿泥石膜的生长模式.岩性油气藏, 2017, 29(4):1-10. ZHOU X F, DING L, YANG W G, et al. Growth pattern of chlorite film in Chang 8 sandstone of Yanchang Formation in Ordos Basin. Lithologic Reservoirs, 2017, 29(4):1-10.
[19] 刘金库, 彭军, 刘建军, 等.绿泥石环边胶结物对致密砂岩孔隙的保存机制——以川中-川南过渡带包界地区须家河组储层为例. 石油与天然气地质, 2009, 30(1):53-58. LIU J K, PENG J, LIU J J, et al. Pore-preserving mechanism of chlorite rims in tight sandstone-an example from the T3x Formation of Baojie area in the transitional zone from the central to southern Sichuan Basin. Oil & Gas Geology, 2009, 30(1):53-58.
[20] EHRENBERG S N, NADEAU P H, STEEN Ø. Petroleum reservoir porosity versus depth:Influence of geological age. AAPG Bulletin, 2009, 93(10):1281-1296.
[1] 柴毓, 王贵文, 柴新. 四川盆地金秋区块三叠系须二段储层非均质性及成因[J]. 岩性油气藏, 2021, 33(4): 29-40.
[2] 徐宁宁, 王永诗, 张守鹏, 邱隆伟, 张向津, 林茹. 鄂尔多斯盆地大牛地气田二叠系盒1段储层特征及成岩圈闭[J]. 岩性油气藏, 2021, 33(4): 52-62.
[3] 李志远, 杨仁超, 张吉, 王一, 杨特波, 董亮. 天然气扩散散失率定量评价——以苏里格气田苏X区块为例[J]. 岩性油气藏, 2021, 33(4): 76-84.
[4] 孔垂显, 巴忠臣, 崔志松, 华美瑞, 刘月田, 马晶. 火山岩油藏压裂水平井应力敏感产能模型[J]. 岩性油气藏, 2021, 33(4): 166-175.
[5] 郑荣臣, 李宏涛, 史云清, 肖开华. 川东北元坝地区三叠系须三段沉积特征及成岩作用[J]. 岩性油气藏, 2021, 33(3): 13-26.
[6] 许飞. 考虑化学渗透压作用下页岩气储层压裂液的自发渗吸特征[J]. 岩性油气藏, 2021, 33(3): 145-152.
[7] 姚海鹏, 于东方, 李玲, 林海涛. 内蒙古地区典型煤储层吸附特征[J]. 岩性油气藏, 2021, 33(2): 1-8.
[8] 魏钦廉, 崔改霞, 刘美荣, 吕玉娟, 郭文杰. 鄂尔多斯盆地西南部二叠系盒8下段储层特征及控制因素[J]. 岩性油气藏, 2021, 33(2): 17-25.
[9] 张晓辉, 张娟, 袁京素, 崔小丽, 毛振华. 鄂尔多斯盆地南梁-华池地区长81致密储层微观孔喉结构及其对渗流的影响[J]. 岩性油气藏, 2021, 33(2): 36-48.
[10] 严敏, 赵靖舟, 曹青, 吴和源, 黄延昭. 鄂尔多斯盆地临兴地区二叠系石盒子组储层特征[J]. 岩性油气藏, 2021, 33(2): 49-58.
[11] 龙盛芳, 王玉善, 李国良, 段传丽, 邵映明, 何咏梅, 陈凌云, 焦煦. 苏里格气田苏49区块盒8下亚段致密储层非均质性特征[J]. 岩性油气藏, 2021, 33(2): 59-69.
[12] 杨凡凡, 姚宗全, 杨帆, 德勒恰提·加娜塔依, 张磊, 曹天儒. 准噶尔盆地玛北地区三叠系百口泉组岩石物理相[J]. 岩性油气藏, 2021, 33(1): 99-108.
[13] 周新平, 邓秀芹, 李士祥, 左静, 张文选, 李涛涛, 廖永乐. 鄂尔多斯盆地延长组下组合地层水特征及其油气地质意义[J]. 岩性油气藏, 2021, 33(1): 109-120.
[14] 高计县, 孙文举, 吴鹏, 段长江. 鄂尔多斯盆地东北缘神府区块上古生界致密砂岩成藏特征[J]. 岩性油气藏, 2021, 33(1): 121-130.
[15] 梁志凯, 李卓, 李连霞, 姜振学, 刘冬冬, 高凤琳, 刘晓庆, 肖磊, 杨有东. 松辽盆地长岭断陷沙河子组页岩孔径多重分形特征与岩相的关系[J]. 岩性油气藏, 2020, 32(6): 22-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨午阳, 杨文采, 刘全新, 王西文. 三维F-X域粘弹性波动方程保幅偏移方法[J]. 岩性油气藏, 2007, 19(1): 86 -91 .
[2] 段天向, 刘晓梅, 张亚军, 肖述琴. Petrel 建模中的几点认识[J]. 岩性油气藏, 2007, 19(2): 102 -107 .
[3] 张立秋. 南二区东部二类油层上返层系组合优化[J]. 岩性油气藏, 2007, 19(4): 116 -120 .
[4] 张娣,侯中健,王亚辉,王莹,王春联. 板桥—北大港地区沙河街组沙一段湖相碳酸盐岩沉积特征[J]. 岩性油气藏, 2008, 20(4): 92 -97 .
[5] 孙洪斌,张凤莲. 断陷盆地优质储层的成因———以辽河坳陷古近系沙河街组储层为例[J]. 岩性油气藏, 2009, 21(1): 51 -54 .
[6] 樊怀才,李晓平,窦天财,吴欣袁. 应力敏感效应的气井流量动态特征研究[J]. 岩性油气藏, 2010, 22(4): 130 -134 .
[7] 梁晓伟,韩永林,王海红,王成玉,牛小兵,辛红刚. 鄂尔多斯盆地姬塬地区上三叠统延长组裂缝特征及其地质意义[J]. 岩性油气藏, 2009, 21(2): 49 -53 .
[8] 田淑芳,张鸿文. 应用生命周期旋回理论预测辽河油田石油探明储量增长趋势[J]. 岩性油气藏, 2010, 22(1): 98 -100 .
[9] 杨凯,郭肖. 裂缝性低渗透油藏三维两相黑油数值模拟研究[J]. 岩性油气藏, 2009, 21(3): 118 -121 .
[10] 翟中喜,秦伟军,郭金瑞. 油气充满度与储层通道渗流能力的定量关系———以泌阳凹陷双河油田岩性油藏为例[J]. 岩性油气藏, 2009, 21(4): 92 -95 .