岩性油气藏 ›› 2023, Vol. 35 ›› Issue (6): 63–71.doi: 10.12108/yxyqc.20230608

• 地质勘探 • 上一篇    下一篇

阿联酋西部地区白垩系森诺曼阶高孔渗灰岩储层特征及控制因素

罗贝维1, 尹继全1, 胡广成2, 陈华1, 康敬程1, 肖萌1, 朱秋影1, 段海岗1   

  1. 1. 中国石油勘探开发研究院, 北京 100083;
    2. 中国石油国际勘探开发有限公司, 北京 100034
  • 收稿日期:2023-06-08 修回日期:2023-07-03 出版日期:2023-11-01 发布日期:2023-11-07
  • 第一作者:罗贝维(1986—),男,博士,高级工程师,主要从事中东地区石油地质综合研究和油气勘探研究方面的工作。地址:(100083)北京市海淀区学院路20号910信箱。Email:luobeiwei@petrochina.com.cn。
  • 基金资助:
    国家自然科学基金项目“特提斯演化控制下的油气差异富集机理与勘探领域”(编号:92255302); 中国石油天然气股份有限公司科学研究与技术开发项目“海外复杂碳酸盐岩精细勘探关键技术研究”(编号:2021DJ3104)联合资助

Characteristics and controlling factors of high porosity and permeability limestone reservoirs of Cretaceous Cenomanian in the western United Arab Emirates

LUO Beiwei1, YIN Jiquan1, HU Guangcheng2, CHEN Hua1, KANG Jingcheng1, XIAO Meng1, ZHU Qiuying1, DUAN Haigang1   

  1. 1. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China;
    2. China National Oil and Gas Exploration and Development Corporation, Beijing 100034, China
  • Received:2023-06-08 Revised:2023-07-03 Online:2023-11-01 Published:2023-11-07

摘要: 利用岩心及薄片分析、核磁共振、微米CT测试、层序格架下的等时追踪及古地貌恢复等方法,对阿联酋西部地区白垩系森诺曼阶高孔渗灰岩的沉积特征、层序及沉积演化特征和成岩作用进行了系统剖析,从构造-沉积-成岩多维度对高孔渗储层的控制因素进行了研究。研究结果表明:①阿联酋西部地区森诺曼阶高孔渗灰岩储层主要分布于Mishrif组,岩性主要为亮晶厚壳蛤灰岩、亮晶生屑灰岩和泥晶生屑灰岩,储集空间主要为体腔孔、铸模孔和粒间溶孔;Mishrif组整体为碳酸盐岩缓坡沉积,可识别出内缓坡、中缓坡和外缓坡3类沉积亚相,厚壳蛤礁、高能滩、滩前、滩后、滩间及潟湖等6个微相;高孔渗储层主要发育于厚壳蛤礁微相和高能滩微相,其中,厚壳蛤礁微相优质储层孔隙度为20%~34%,渗透率为150~2 000 m D,高能滩微相优质储层孔隙度为25%~33%,渗透率为40~370 mD。②研究区Mishrif组自下而上可分为3个三级层序SQ1—SQ3,可细分为7个体系域,SQ1—SQ2层序主要由高位体系域构成,厚壳蛤礁微相和高能滩微相规模较大;SQ3层序由高位体系域和海侵体系域构成,古地貌高部位发育高能滩微相且物性更好。③研究区Mishrif组高孔渗储层的孔隙发育受多期成岩作用叠合改造,包括以同生期大气淡水溶蚀为主的建设性成岩作用和与烃类充注相关的保持性成岩作用。④研究区Mishrif组高孔渗储层受沉积相、层序格架、古地貌格局以及成岩改造作用等多重因素控制;储层物性具有明显的相控特征,而沉积微相的分布与演化在Mishrif组沉积早—中期(SQ1—SQ2)受控于三级层序内部高位体系域旋回,在沉积晚期(SQ3)则受继承性古地貌影响。

关键词: 高孔渗灰岩储层, 碳酸盐岩缓坡, 厚壳蛤礁, 高能滩, 相控, 层序地层, 古地貌, 大气淡水溶蚀, 森诺曼阶灰岩, Mishrif组, 白垩系, 阿联酋西部

Abstract: By using methods such as core and thin section analysis,nuclear magnetic resonance and micro-CT testing,isochronous tracing under sequence framework and paleogeomorphic restoration,a systematic analysis was conducted on the sedimentary characteristics,sequence,sedimentary evolution characteristics and diagenesis of high porosity and permeability limestone reservoirs of Cretaceous Cenomanian in the western United Arab Emirates,and the controlling factors of high porosity and permeability reservoirs were studied from the aspects of structure,sedimentation and diagenesis. The results show that:(1)The high porosity and permeability limestone reservoirs of Cenomanian in the western United Arab Emirates are mainly developed in Mishrif Formation,with the lithologies mainly consisting of sparite rudist limestone,sparite bioclastic limestone,and micrite bioclastic limestone. The reservoirs space is mainly composed of biological cavities,moldic pores and intergranular dissolved pores. The Mishrif Formation is generally characterized by carbonate ramp sedimentation,three types of subfacies including inner ramp,middle ramp and outer ramp,and six types of microfacies including rudistid reefs,high-energy shoals,front/back shoals and inter-shoals,lagoons can be identified. High porosity and permeability reservoirs are mainly developed in rudistid reefs and high-energy shoals. The porosity and permeability of limestone reservoirs in rudistid reefs are 20%-34% and 150-2 000 mD,respectively,while the porosity and permeability of limestone reservoirs in high-energy shoals are 25%-33% and 40-370 mD,respectively.(2)From bottom to top,the Mishrif Formation in the study area can be divided into three third-order sequences SQ1-SQ3 and seven systems tracts. The SQ1-SQ2 sequences are mainly composed of highstand systems tract,with rudistid reefs and high-energy shoals broadly developed. The SQ3 sequence is composed of highstand systems tract and transgressive systems tract,with high-energy shoals well developed in high parts of ancient landform and beeter properties.(3)The pore development of the high porosity and permeability reservoirs of Mishrif Formation in the study area is afffacted by multi-stage of diagenesis,including constructive diagenesis dominated by contemporaneous atmospheric freshwater dissolution and maintenance diagenesis related to hydrocarbon filling.(4)The high porosity and permeability reservoirs of Mishrif Formation in the study area are controlled by multiple geological factors such as sedimentary facies,sequence framework,paleogeomorphology and diagenetic effects,and the sedimentary facies was setted as the main factors. The distribution and evolution of sedimentary facies in Mishrif Formation was controlled by HST during SQ1 and SQ2,while influenced by the inherited paleogeomorphology during the SQ3.

Key words: high porosity and permeability limestone reservoir, carbonate ramp, rudistid reef, high-energy shoal, facies control, sequence stratigraphy, paleogeomorphology, atmospheric freshwater dissolution, Cenomanian limestone, Mishrif Formation, Cretaceous, the western United Arab Emirates

中图分类号: 

  • TE122.2+3
[1] ALSHARHAN A S,NAIRN A E M. The late Mesozoic part of the Zuni cycle in the Middle East:The cretaceous[M]. Amsterdam,Netherlands:Elsevier B.V.,1997:297-390.
[2] 窦立荣,温志新,王建军,等. 2021年世界油气勘探形势分析与思考[J].石油勘探与开发,2022,49(5):582-591.DOU Lirong,WEN Zhixin,WANG Jianjun,et al. Analysis of the world oil and gas exploration situation in 2021[J]. Petroleum Exploration and Development,2022,49(5):582-591.
[3] 白国平.中东油气区油气地质特征[M].北京:中国石化出版社,2007.BAI Guoping. Geological characteristics of oil and gas in the Middle East[M]. Beijing:China Petrochemical Press,2007.
[4] 段海岗,周长迁,张庆春,等.中东油气富集区成藏组合特征及其勘探领域[J].地学前缘,2014,21(3):118-126.DUAN Haigang,ZHOU Changqian,ZHANG Qingchun,et al.The plays character of the abundant hydrocarbon area in the Middle East and their exploration potential[J]. Earth Science Frontiers,2014,21(3):118-126.
[5] 罗贝维,张庆春,段海岗,等.中东地区阿普特阶Shuaiba组碳酸盐岩沉积体系特征及模式探究[J].岩石学报,2019,27(1):1291-1301.LUO Beiwei,ZHANG Qingchun,DUAN Haigang,et al. Geological characteristics of sedimentary system and model of Shuaiba Formation at Aptian Stage,Middle East[J]. Acta Petrologica Sinica,2019,27(1):1291-1301.
[6] 朱日祥,张水昌,万博,等.新特提斯域演化对波斯湾超级含油气盆地形成的影响[J].石油勘探与开发,2023,50(1):1-11.ZHU Rixiang,ZHANG Shuichang,WAN Bo,et al. Effects of Neo-Tethyan evolution on the petroleum system of Persian Gulf superbasin[J]. Petroleum Exploration and Development,2023,50(1):1-11.
[7] MARTIN A Z. Late Permian to Holocene Paleofacies evolution of the Arabian Plate and its hydrocarbon occurences[J]. Search&Discovery,2001,6(3):445-504.
[8] 乔占峰,孙圆辉,曹鹏,等.巨厚灰岩油藏中隔夹层与高渗层成因与发育规律:以伊拉克H油田Mishrif组为例[J].海相油气地质,2022,27(1):71-83.QIAO Zhanfeng,SUN Yuanhui,CAO Peng,et al. Genesis and development law of barrier and baffles and high permeable streak in the massive bioclastic reservoir:A case study of the Upper Cretaceous Mishrif Formation in H Oilfield,Iraq[J].Marine Origin Petroleum Geology,2022,27(1):71-83.
[9] 赵丽敏,周文,钟原,等.伊拉克H油田Mishrif组储集层含油性差异主控因素分析[J].石油勘探与开发,2019,46(2):302-311.ZHAO Limin,ZHOU Wen,ZHONG Yuan,et al. Control factors of reservoir oil-bearing difference of Cretaceous Mishrif Formation in the H oilfield,Iraq[J]. Petroleum Exploration and Development,2019,46(2):302-311.
[10] 余义常,宋新民,林敏捷,等.伊拉克H油田Mishrif组下段隔夹层特征及开发策略[J].中国石油大学学报(自然科学版),2023,47(2):1-12.YU Yichang,SONG Xinmin,LIN Minjie,et al. Characteristics and development strategies of interlayers in the lower member of Mishrif Formation in H Oilfield,Iraq[J]. Journal of China University of Petroleum(Edition of Natural Science),2023,47(2):1-12.
[11] 叶禹,李柯然,杨沛广,等.阿联酋东鲁卜哈利盆地白垩系Mishrif组碳酸盐岩储层孔隙特征[J].海相油气地质,2022,35(4):45-54.YE Yu,LI Keran,YANG Peiguang,et al. Pore characteristics of carbonate reservoir of the Cretaceous Mishrif Formation in East Rub Al Khali Basin,UAE[J]. Marine Origin Petroleum Geology,2022,35(4):45-54.
[12] 卞从胜,李永新,吕明胜,等.碳酸盐岩沉积演化模式与沉积相分布:以鲁卜哈利盆地东北部上白垩统Mishrif组为例[J].天然气地球科学,2022,33(4):618-628.BIAN Congsheng,LI Yongxin,LYU Mingsheng,et al. Sedimentary evolution model and sedimentary facies distribution of carbonate rocks:Case study of Mishrif Formation in northeast Rub Khali Basin[J]. Natural Gas Geoscience,2022,33(4):618-628.
[13] DUNHAM R J. Classification of carbonate rocks according to depositional texture[G]//HAM W E. Classification of carbonate rocks:A symposium. Tulsa:AAPG Memoir 1,1962:108-121.
[14] FOLK R L. Practice classification of limestone[J]. AAPG Bulletin,1962,243:1-38.
[15] 罗贝维,张庆春,段海岗,等.中东鲁卜哈利盆地白垩纪构造演化的沉积响应及对石油勘探启示[J].中国石油勘探,2020,25(4):115-124.LUO Beiwei,ZHANG Qingchun,DUAN Haigang,et al. Sedimentary response of Cretaceous tectonic evolution in the Middle East Rub Al Khali Basin and its inspirations for oil exploration[J]. China Petroleum Exploration,2020,25(4):115-124.
[16] BROMHEAD A D,VAN BUCHEM F S P,SIMMON M D,et al. Sequence stratigraphy,paleogeography and petroleum plays of the Cenomanian-Turonian succession of The Arabian Plate:An updated synthesis[J]. Journal of Petroleum Geology,2022,45(2):119-162.
[17] AZZAM I N,TAHER A K. Sequence stratigraphy and source rock potential of Middle Cretaceous(Upper Wasia Group)in West Abu Dhabi[R]. SPE 25577,1993.
[18] VAHRENKAMP V,FRANCO B J,POPA D,et al. Development and infill of the late Albian to Turonian“Shilaif”Intrashelf Basin at the eastern margin of the Giant Mesozoic Arabian Carbonate Platform:Basin architecture and time stratigraphy[R]. Doha:The 9th International Petroleum Technology Conference,2015.
[19] MAHDI T A,AQRAWI A A M,HORBURY A D,et al. Sedimentological characterization of the mid-Cretaceous Mishrif reservoir in southern Mesopotamian Basin,Iraq[J]. Geoarabia,2013,18(1):139-174.
[20] 高计县,田昌炳,张为民,等.伊拉克鲁迈拉油田Mishrif组碳酸盐岩储层特征及成因[J].石油学报,2013,34(5):843-852.GAO Jixian,TIAN Changbing,ZHANG Weimin,et al. Characteristics and genesis of carbonate reservoir of the Mishrif Formation in the Rumaila oil field,Iraq[J]. Acta Petrolei Sinica,2013,34(5):843-852.
[21] 赵宗举.全球海平面变化指标及海相构造层序研究方法:以塔里木盆地奥陶系为例[J].石油学报,2015,36(3):262-273.ZHAO Zongju. Indicators of global sea-level change and research methods of marine tectonic sequences:Take Ordovician of Tarim Basin as an example[J]. Acta Petrolei Sinica,2015,36(3):262-273.
[22] 张君龙.碳酸盐岩层序沉积演化及海平面的控制作用:以塔里木盆地古城地区奥陶系为例[J].天然气工业,2017,37(1):46-53.ZHANG Junlong. Carbonate sequence sedimentary evolution and control of sea level:A case study of Ordovician in the Gucheng area,Tarim Basin[J]. Natural Gas Industry,2017,37(1):46-53.
[23] 金民东,谭秀成,童明胜,等.四川盆地高石梯—磨溪地区灯四段岩溶古地貌恢复及地质意义[J].石油勘探与开发,2017,44(1):58-68.JIN Mindong,TAN Xiucheng,TONG Mingsheng,et al. Karst paleogeomorphology of the fourth member of Sinian Dengying Formation in Gaoshiti-Moxi area,Sichuan Basin,SW China:Restoration and geological significance[J]. Petroleum Exploration and Development,2017,44(1):58-68.
[24] 郑剑,王振宇,杨海军,等.高频层序格架内礁型微地貌特征及其控储机理:以塔中东部地区上奥陶统为例[J].地质学报,2015,89(5):942-956.ZHENG Jian,WANG Zhenyu,YANG Haijun,et al. The control mechanism of microtopography in the high frequency sequence framework to reef-bank complex reservoir:An example from the Upper Ordovician Lianglitage Formation in eastern Tazhong area[J]. Acta Geologica Sinica,2015,89(5):942-956.
[25] MATTEWS R K,FROHLICH C. Forward modeling of sequence stratigraphy and diagenesis:Application to rapid,cost-effective carbonate reservoir characterization[J]. Geoarabia,1998,3(3):359-384.
[26] AWADH S M,AL-MIMAR H S,AL-YASERI A A. Salinity mapping model and brine chemistry of Mishrif reservoir in Basrah oilfields,Southern Iraq[J]. Arabian Journal of Geosciences,2018,11(18):1-12.
[27] MADELEINE J R,TONY D. Methanogenesis during Shuaiba diagenesis:Examples from Al Shaheen Field,Block 5,offshore Qatar[J]. Geoarabia,2007,12(1):37-58.
[28] 李峰峰,叶禹,余义常,等.碳酸盐岩成岩作用研究进展[J].地质科技通报,2023,42(1):170-190.LI Fengfeng,YE Yu,YU Yichang,et al. Research progress of carbonate rock diagenesis[J]. Bulletin of Geological Science and Technology,2023,42(1):170-190.
[29] 葛云锦,陈勇,周瑶琪.不同成岩条件下油气充注对碳酸盐岩成岩作用的影响[J].中国石油大学学报(自然科学版),2009,33(1):18-22.GE Yunjin,CHEN Yong,ZHOU Yaoqi. Effects of hydrocarbon emplacement on diagenesis of carbonatite in different conditions[J]. Journal of China University of Petroleum(Edition of Natural Science),2009,33(1):18-22.
[1] 屈卫华, 田野, 董常春, 郭小波, 李立立, 林斯雅, 薛松, 杨世和. 松辽盆地德惠断陷白垩系烃源岩特征及其控藏作用[J]. 岩性油气藏, 2024, 36(6): 122-134.
[2] 肖博雅. 二连盆地阿南凹陷白垩系凝灰岩类储层特征及有利区分布[J]. 岩性油气藏, 2024, 36(6): 135-148.
[3] 王洪星, 韩诗文, 胡佳, 潘志浩. 松辽盆地德惠断陷白垩系火石岭组凝灰岩储层预测及成藏主控因素[J]. 岩性油气藏, 2024, 36(5): 35-45.
[4] 周自强, 朱正平, 潘仁芳, 董於, 金吉能. 基于波形相控反演的致密砂岩储层模拟预测方法——以黄骅坳陷沧东凹陷南部古近系孔二段为例[J]. 岩性油气藏, 2024, 36(5): 77-86.
[5] 周洪锋, 吴海红, 杨禹希, 向红英, 高吉宏, 贺昊文, 赵旭. 二连盆地巴音都兰凹陷B51井区白垩系阿四段扇三角洲前缘沉积特征[J]. 岩性油气藏, 2024, 36(4): 85-97.
[6] 王同川, 陈浩如, 温龙彬, 钱玉贵, 李玉琢, 文华国. 川东五百梯地区石炭系岩溶古地貌识别及储集意义[J]. 岩性油气藏, 2024, 36(4): 109-121.
[7] 杨为华. 松辽盆地双城断陷白垩系营城组四段致密油成藏主控因素及模式[J]. 岩性油气藏, 2024, 36(4): 25-34.
[8] 冯斌, 黄晓波, 何幼斌, 李华, 罗进雄, 李涛, 周晓光. 渤海湾盆地庙西北地区古近系沙河街组三段源-汇系统重建[J]. 岩性油气藏, 2024, 36(3): 84-95.
[9] 何文渊, 赵莹, 钟建华, 孙宁亮. 松辽盆地古龙凹陷白垩系青山口组页岩油储层中微米孔缝特征及油气意义[J]. 岩性油气藏, 2024, 36(3): 1-18.
[10] 牛成民, 惠冠洲, 杜晓峰, 官大勇, 王冰洁, 王启明, 张宏国. 辽中凹陷西斜坡古近系东三段湖底扇发育模式及大油田发现[J]. 岩性油气藏, 2024, 36(2): 33-42.
[11] 邓远, 陈轩, 覃建华, 李映艳, 何吉祥, 陶鑫, 尹太举, 高阳. 吉木萨尔凹陷二叠系芦草沟组一段沉积期古地貌特征及有利储层分布[J]. 岩性油气藏, 2024, 36(1): 136-144.
[12] 王天海, 许多年, 吴涛, 关新, 谢再波, 陶辉飞. 准噶尔盆地沙湾凹陷三叠系百口泉组沉积相展布特征及沉积模式[J]. 岩性油气藏, 2024, 36(1): 98-110.
[13] 李毕松, 苏建龙, 蒲勇, 缪志伟, 张文军, 肖伟, 张雷, 江馀. 四川盆地元坝地区二叠系茅口组相控岩溶刻画及预测[J]. 岩性油气藏, 2024, 36(1): 69-77.
[14] 张坦, 贾梦瑶, 孙雅雄, 丁文龙, 石司宇, 范昕禹, 姚威. 四川盆地南部中二叠统茅口组岩溶古地貌恢复及特征[J]. 岩性油气藏, 2024, 36(1): 111-120.
[15] 史卜庆, 丁梁波, 马宏霞, 孙辉, 张颖, 许小勇, 王红平, 范国章. 东非海域大型深水沉积体系及油气成藏特征[J]. 岩性油气藏, 2023, 35(6): 10-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .