Lithologic Reservoirs ›› 2018, Vol. 30 ›› Issue (2): 154-160.doi: 10.12108/yxyqc.20180217

Previous Articles     Next Articles

Dynamic simulation analysis of wellbore liquid loading in gas well for Linxing gas field

CHEN Huan1,2, LI Zihan1, CAO Yanfeng1,2, YU Jifei1,2, LI Menglong1   

  1. 1. CNOOC Research Institute Ltd., Beijing 100028, China;
    2. State Key Laboratory of Offshore Oil Exploitation, Beijing 100028, China
  • Received:2017-11-26 Revised:2018-01-09 Online:2018-03-21 Published:2018-03-21

Abstract: The number of liquid loading well in Linxing gas field is increasing gradually, and the lack of measured water production rate and bottom hole pressure makes it difficult to predict the wellbore liquid loading, which seriously affects the normal production and economic benefit of gas well. In order to reveal the process of the wellbore liquid loading in gas well, combined with the characteristics of gas well production tubing and the testing data of wellbore pressure, a set of dynamic prediction method of wellbore liquid loading in gas well suitable for Linxing gas field was established. The result shows that the dynamic prediction method can be used to simulate the dynamic process of wellbore liquid loading in gas well and quantitatively calculate the volume of wellbore liquid loading, so as to accurately calculate the height of wellbore liquid loading in gas well. The method can solve the problem for predicting wellbore liquid loading in gas well, and has a certain guidance and reference significance for the development of Linxing gas field.

Key words:  geosteering , horizontal well , Sulige Gas Field

CLC Number: 

  • TE375
[1] 赵达, 许浩, 汪雷, 等.临兴地区山西组致密砂岩储层特征及成因探讨.岩性油气藏, 2016, 28(4):51-58. ZHAO D, XU H, WANG L, et al. Characteristics and genesis of tight sandstone reservoir of Shanxi Formation in Linxing area, Ordos Basin. Lithologic Reservoirs, 2016, 28(4):51-58.
[2] 魏新善, 胡爱平, 赵会涛, 等.致密砂岩气地质认识新进展.岩性油气藏, 2017, 29(1):11-20. WEI X S, HU A P, ZHAO H T, et al. New geological understanding of tight sandstone gas. Lithologic Reservoirs, 2017, 29(1):11-20.
[3] TURNER R G, HUBBARD M G, DUKLER A E. Analysis and prediction of minimum flow rate for the continuous removal of liquids from gas wells. Journal of Petroleum Technology, 1969, 21(9):1475-1482.
[4] COLEMAN S B, CLAY H B, MCCURDY D G, et al. A new look at predicting gas-well load up. Journal of Petroleum Technology, 1991, 43(7):329-333.
[5] 李闽, 郭平, 刘武, 等.气井连续携液模型比较研究.断块油气田, 2002, 9(6):39-41. LI M, GUO P, LIU W, et al. Comparative study of continuousremoval liquid models from gas wells. Fault-Block Oil & Gas Field, 2002, 9(6):39-41.
[6] 周瑞立, 周舰, 罗懿, 等.低渗产水气藏携液模型研究与应用. 岩性油气藏, 2013, 25(4):123-128. ZHOU R L, ZHOU J, LUO Y, et al. Research and application of liquid-carrying model for low permeability and water production gas reservoir. Lithologic Reservoirs, 2013, 25(4):123-128.
[7] 于继飞, 管虹翔, 顾纯巍, 等. 海上定向气井临界流量预测方法.特种油气藏, 2011, 18(6):117-119. YU J F,GUAN H X,GU C W,et al. Prediction of critical flow rate for offshore directional gas wells. Special Oil & Gas Field, 2011, 18(6):117-119.
[8] 周舰, 王志彬, 罗懿, 等.高气液比气井临界携液流量计算新模型.断块油气田, 2013, 20(6):775-778. ZHOU J, WANG Z B, LUO Y, et al. New model to calculate critical liquid-carrying gas flow rate in gas well with high gasliquid ratio. Fault-Block Oil & Gas Field, 2013, 20(6):775-778.
[9] 李元生, 藤赛男, 杨志兴, 等.考虑界面张力和液滴变形影响的携液临界流量模型.石油钻采工艺, 2017, 39(2):218-223. LI Y S, TENG S N, YANG Z X, et al. Critical liquid carrying flow rate model with consideration of interfacial tension and droplet deformation effect. Oil Drilling & Production Technology, 2017, 39(2):218-223.
[10] 刘刚.气井携液临界流量计算新方法.断块油气田, 2014, 21(3):339-340. LIU G. A new calculation method for critical liquid carrying flow rate of gas well. Fault-Block Oil & Gas Field, 2014, 21(3):339-340.
[11] 赵界, 李颖川, 刘通, 等.大牛地地区致密气田气井积液判断新方法.岩性油气藏, 2013, 25(1):122-125. ZHAO J, LI Y C, LIU T, et al. A new method to judge liquid loading of gas wells in tight gas field of Daniudi area. Lithologic Reservoirs, 2013, 25(1):122-125.
[12] 鹿克峰, 简洁, 张彦振, 等. 井筒变流量气井携液临界流量的确定方法——以东海西湖凹陷多层合采气井为例.岩性油气藏, 2017, 29(3):147-151. LU K F, JIAN J, ZHANG Y Z, et al. A new method of measuring critical liquid carrying flow rate in the variable wellborerate gas well. Lithologic Reservoirs, 2017, 29(3):147-151.
[13] 娄乐勤, 耿新中. 气井携液临界流速多模型辨析. 断块油气田, 2016, 23(4):497-500. LOU L Q, GENG X Z. Models of critical liquid carrying flow rate for gas wells. Fault-Block Oil & Gas Field, 2016, 23(4):497-500.
[14] 苟三权. 气井井筒液面位置确定的简易方法. 油气井测试, 2006, 15(4):25-26. GUO S Q. A simple method to determine flow position in gas well. Well Testing, 2006, 15(4):25-26.
[15] 张紫阳, 张海均, 刘庆志, 等.压力测试资料在排水采气中的初步应用.化工管理, 2014(21):68. ZHANG Z Y, ZHANG H J, LIU Q Z, et al. The preliminary application of pressure test data in the drainage gas recovery. Chemical Enterprise Management, 2014(21):68.
[16] 马遥. 探测液面资料在苏X气田的应用. 石油化工应用, 2016, 35(12):58-61. MA Y. The application of detecting liquid surface in the Su X gas field. Petrochemical Industry Application, 2016, 35(12):58-61.
[17] 黄雨.苏里格气井井筒积液规律及积液判据研究.成都:西南石油大学, 2015. HUANG Y. Wellbore liquid loading regular and judgment of gas wells in tight gas field of Sulige area. Chengdu:Southwest Petroleum University, 2015.
[18] 冯永兵.苏里格气田东区排水采气工艺评价研究.成都:西南石油大学, 2015. FENG Y B. Evaluation research of drainage gas recovery in east Sulige gas field. Chengdu:Southwest Petroleum Institute, 2015.
[19] 陈增辉, 金大权, 赵永刚, 等.苏里格气井井筒积液量计算方法及应用.石油化工应用, 2016, 35(8):25-27. CHEN Z H, JIN D Q, ZHAO Y G, et al. Calculation method of the volume of wellbore effusion liquid in gas well of Sulige gasfield and its application. Petrochemical Industry Application, 2016, 35(8):25-27.
[20] 赵春立, 杨志, 张正祖.气井井筒积液及其高度研究. 重庆科技学院学报(自然科学版), 2011, 13(5):93-96. ZHAO C L, YANG Z, ZHANG Z Z, et al. Prediction of critical flow rate for offshore directional gas wells. Journal of Chong-qing University of Science and Technology(Natural Science Edition), 2011, 13(5):93-96.
[21] 李波, 王军磊, 宁波, 等.气井井筒温度、压力与积液综合预测模型.石油钻采工艺, 2014, 36(4):64-70. LI B, WANG J L, NING B, et al. A comprehensive prediction model of wellbore temperature, pressure and accumulated liquid for gas wells. Oil Drilling & Production Technology, 2014, 36(4):64-70.
[22] 宋玉龙, 杨雅惠, 曾川, 等.临界携液流量与流速沿井筒分布规律研究.断块油气田, 2015, 22(1):90-93. SONG Y L, YANG Y H, ZENG C, et al. Research on distribution of critical carrying fluid flow rate and velocity along shaft. Fault-Block Oil & Gas Field, 2015, 22(1):90-93.
[23] 朱春明, 王新根, 董社霞, 等.临兴区块致密气井油管直径优选研究.石油机械, 2017, 45(4):74-78. ZHU C M, WANG X G, DONG S X, et al. Study on tubing diameter optimization for tight gas well in block Linxing. China Petroleum Machinery, 2017, 45(4):74-78.
[24] 吴武超, 李治平, 赖枫鹏, 等. 致密气藏水平井速度管下入时间确定方法. 断块油气田, 2015, 22(4):522-525. WU W C, LI Z P, LAI F P, et al. Method to determine time of installing velocity string for horizontal well in tight gas reservoirs. Fault-Block Oil & Gas Field, 2015, 22(4):522-525.
[1] LI Zhiyuan, YANG Renchao, ZHANG Ji, WANG Yi, YANG Tebo, DONG Liang. Quantitative evaluation of natural gas diffusion loss rate: A case study of Su-X block in Sulige gas field [J]. Lithologic Reservoirs, 2021, 33(4): 76-84.
[2] MA Qiaoyu, ZHANG Xin, ZHANG Chunlei, ZHOU Heng, WU Zhongyuan. Shear wave velocity prediction based on one-dimensional convolutional neural network [J]. Lithologic Reservoirs, 2021, 33(4): 111-120.
[3] LONG Shengfang, WANG Yushan, LI Guoliang, DUAN Chuanli, SHAO Yingming, HE Yongmei, CHEN Lingyun, JIAO Xu. Heterogeneity characteristics of tight reservoir of lower submember of He 8 member in Su 49 block,Sulige gas field [J]. Lithologic Reservoirs, 2021, 33(2): 59-69.
[4] HOU Kefeng, LI Jinbu, ZHANG Ji, WANG Long, TIAN Min. Evaluation and development countermeasures of undeveloped reserves in Sulige tight sandstone gas reservoir [J]. Lithologic Reservoirs, 2020, 32(4): 115-125.
[5] TIAN Qinghua, LIU Jun, ZHANG Chen, WANG Wensheng, HUANG Dan. Characteristics and controlling factors of Lower Paleozoic reservoir in Sulige Gas Field [J]. Lithologic Reservoirs, 2020, 32(2): 33-42.
[6] LIU Na, ZHOU Zhaohua, REN Dazhong, NAN Junxiang, LIU Dengke, DU Kun. Distribution characteristics and controlling factors of movable fluid in tight sandstone gas reservoir: a case study of the eighth member of Xiashihezi Formation and the first member of Shanxi Formation in western Sulige Gas Field [J]. Lithologic Reservoirs, 2019, 31(6): 14-25.
[7] FENG Qianghan, YANG Shengguo, XIONG Zhe, GAO Hang, ZHANG Jiachao, YANG Yi, YANG Zhen. Gas-water distribution characteristics in S48 block, western Sulige Gas Field [J]. Lithologic Reservoirs, 2019, 31(5): 61-69.
[8] CUI Lianke, SHAN Jingfu, LI Fuping, CUI Lu, CHONG Jian. Estimating method of braided channel bar under sparse well net: a case from Su X block in Sulige Gas Field [J]. Lithologic Reservoirs, 2018, 30(1): 155-164.
[9] YANG Tebo, WANG Jiping, WANG Yi, FU Bin, XUE Wen, HAO Qian. Reservoir modeling of tight sandstone gas reservoir based on geological knowledge database:a case from Su X block in Sulige Gas Field [J]. Lithologic Reservoirs, 2017, 29(4): 138-145.
[10] Sun Weifeng,Zhang Ji,Ma Zhixin,Hao Qian,Shi Linhui,Zhang Zhigang . Geosteering technology of horizontal well and its application in Sulige Gas Field [J]. Lithologic Reservoirs, 2015, 27(6): 132-137.
[11] YUAN Lin 1,LI Xiaoping 1,LIU Panpan 2. New method for determining critical rate of horizontal well in gas cap and bottom water reservoirs [J]. LITHOLOGIC RESERVOIRS, 2015, 27(1): 122-126.
[12] HOU Jiagen, TANG Ying, LIU Yuming, YANG Yong, WANG Shaofei. Distribution patterns of tight reservoirs in eastern Sulige Gas Field, Ordos Basin [J]. Lithologic Reservoirs, 2014, 26(3): 1-6.
[13] LI Xinyu, ZENG Qingcai, BAO Shihai, HUANG Jiaqiang. Application of “two step inversion” technology to the prediction of tight sandstone gas reservoir: A case study from Su X block in Sulige Gas Field [J]. Lithologic Reservoirs, 2013, 25(5): 81-85.
[14] FU Bin,YANG Yingzhou,ZOU Lirong. Application of time—frequency analysis technique to recognition of fluvial facies sequence [J]. Lithologic Reservoirs, 2013, 25(4): 89-94.
[15] ZHONG Jiajun, TANG Hai, LU Dongliang, ZHANG Zongda, LI Donglin. Study on a single point deliverability formula of horizontal wells in Sulige Gas Field [J]. Lithologic Reservoirs, 2013, 25(2): 107-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] DUAN Tianxiang,LIU Xiaomei,ZHANG Yajun,XIAO Shuqin. Discussion on geologic modeling with Petrel[J]. Lithologic Reservoirs, 2007, 19(2): 102 -107 .
[2] ZHANG Liqiu. Optimization of upward strata combination of second class oil layer in eastern south Ⅱ area of Daqing Oilfield[J]. Lithologic Reservoirs, 2007, 19(4): 116 -120 .
[3] ZHANG Di,HOU Zhongjian,WANG Yahui,WANG Ying,WANG Chunlian. Sedimentary characteristics of lacustrine carbonate rocks of the first member of Shahejie Formation in Banqiao-Beidagang area[J]. Lithologic Reservoirs, 2008, 20(4): 92 -97 .
[4] FAN Huaicai, LI Xiaoping, DOU Tiancai, WU Xinyuan. Study on stress sensitivity effect on flow dynamic features of gas wells[J]. Lithologic Reservoirs, 2010, 22(4): 130 -134 .
[5] TIAN Shufang,ZHANG Hongwen. Application of life cycle theory to predict increasing trend of proved oil reserves in Liaohe Oilfield[J]. Lithologic Reservoirs, 2010, 22(1): 98 -100 .
[6] YANG Kai,GUO Xiao. Numerical simulation study of three-dimensional two-phase black oil model in fractured low permeability reservoirs[J]. Lithologic Reservoirs, 2009, 21(3): 118 -121 .
[7] ZHAI Zhongxi, QINWeijun, GUO Jinrui. Quantitative relations between oil-gas filling degree and channel seepage flow capacity of the reservoir:Example of Shuanghe Oilfield in Biyang Depression[J]. Lithologic Reservoirs, 2009, 21(4): 92 -95 .
[8] QI Minghui,LU Zhengyuan,YUAN Shuai,LI Xinhua. The analysis on the sources of water body and characteristic of water breakthough at Block 12 in Tahe Oilfield[J]. Lithologic Reservoirs, 2009, 21(4): 115 -119 .
[9] LI Xiangbo,CHEN Qi,lin,LIU Huaqing,WAN Yanrong,MU Jingkui,LIAO Jianbo,WEI Lihua. Three types of sediment gravity flows and their petroliferous features of Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2010, 22(3): 16 -21 .
[10] LIU Yun,LU Yuan,YI Xiangyi, ZHANG Junliang, ZHANG Jinliang,WANG Zhenxi. Gas hydrate forecasting model and its influencing factors[J]. Lithologic Reservoirs, 2010, 22(3): 124 -127 .
TRENDMD: