Lithologic Reservoirs ›› 2018, Vol. 30 ›› Issue (4): 91-97.doi: 10.12108/yxyqc.20180410

Previous Articles     Next Articles

Grid tomography based on well-to-seismic integration in anisotropic velocity modeling and its application

HAN Linghe, HU Ziduo, FENG Huiyuan, LIU Wei, YANG Zhe, WANG Yanxiang   

  1. PetroChina Research Institute of Petroleum Exploration & Development-Northwest, Lanzhou 730020, China
  • Received:2017-09-13 Revised:2018-01-16 Online:2018-07-21 Published:2018-07-21

Abstract: Estimation of anisotropic velocity and parameter is a key technology in the success of anisotropic prestack depth migration in real seismic data processing. It is one of the commonly used methods to calculate the anisotropic parameters by well-to-seismic integration for seismic data processing at present. The conventional well-to-seismic integration method can be used to obtain anisotropic parameters by comparing the formation thickness,but the accuracy is low and cannot meet the geological requirements. Grid tomography based on wellto-seismic integration was applied to anisotropic velocity modeling in 3D VTI media. The anisotropic velocity and parameters of each grid were updated along the ray path,and the accuracy of velocity model was further improved by iterative calculation. The application results show that compared with conventional well-to-seismic integration method,grid tomography based on well-to-seismic integration can greatly improve the precision of anisotropic velocity and parameters and enhance the consistency of depth migration results and well logging data. Moreover,the common imaging point gather of long offset is more flatten,which can provide more information of long offset for prestack inversion, and the local imaging effect of the migration results is also improved effectively.

Key words: low permeability reservoir, CO2 huff and puff, concentration diffusion, fluid property heterogeneity, stress sensitivity, well test model

CLC Number: 

  • P631.4
[1] 李凡异, 狄帮让, 魏建新, 等.溶洞体宽度对偏移剖面反射振幅影响的定量研究.岩性油气藏, 2016, 28(5):113-116. LI F Y, DI B R, WEI J X, et al. Quantitative study of the effect of cavern width on reflection amplitude of migrationsection. Lithologic Reservoirs, 2016, 28(5):113-116.
[2] 魏新善, 胡爱平, 赵会涛, 等.致密砂岩气地质认识新进展. 岩性油气藏, 2017, 29(1):11-20. WEI X S, HU A P, ZHAO H T, et al. New geological understanding of tight sandstone gas. Lithologic Reservoirs, 2017, 29(1):11-20.
[3] ZHANG Y, ZHANG H Z, ZHANG G Q. A stable TTI reverse time migration and its implementation. Geophysics, 2011, 76(3):WA3-WA11.
[4] THOMAS M, MOTHI S, MCGILL P. Improving subsalt images using tilted-Orthorhombic RTM in Green Canyon, Gulf of Mexico. 82th Annual Meeting, SEG Expanded Abstracts, 2012:693-697.
[5] 陈可洋.逆时成像技术在大庆探区复杂构造成像中的应用. 岩性油气藏, 2017, 29(6):91-100. CHEN K Y. Application of reverse-time migration technology to complex structural imaging in Daqing exploration area. Lithologic Reservoirs, 2017, 29(6):91-100.
[6] THOMSEN L. Weak elastic anisotropy. Geophysics, 1986, 51(10):1954-1966.
[7] ALKHALIFAH T, TSVANKIN I. Velocity analysis for transversely isotropic media. Geophysics, 1995, 60(5):1550-1566.
[8] ALKHALIFAH T. Velocity analysis using nonhyperbolic moveout in transversely isotropic media. Geophysics, 1997, 62(6):1839-1854.
[9] GRECHKA V, TSVANKIN I. Feasibility of nonhyperbolic moveout inversion in transversely isotropic media. Geophysics, 1998, 63(3):957-969.
[10] DEWANGAN P,TSVANKIN I. Velocity-independent layer stripping of PP and PS reflection traveltimes. Geophysics, 2006, 71(4):U59-U65.
[11] WANG X X, TSVANKIN I. Estimation of interval anisotropy parameters using velocity-independent layer stripping. Geophysics, 2009, 74(5):WB117-WB127.
[12] BACHRACH R, OSYPOV K, NICHOLS D, et al. Applications of deterministic and stochastic rock physics modelling to anisotropic velocity model building. Geophysical Prospecting, 2013, 61(2):404-415.
[13] 杜丽英, 杜丽娟, 肖乾华, 等. VTI介质中弹性参数地震反演方法.石油勘探与开发, 2002, 29(3):59-63. DU L Y, DU L J, XIAO Q H, et al. A new approach to seismic inversion of elastic parameters for VTI media. Petroleum Exploration and Development, 2002, 29(3):59-63.
[14] PRIEUX V, BROSSIER R, GHOLAMI Y, et al. On the footprint of anisotropy on isotropic full waveform inversion:the Valhallcase study. Geophysical Journal International, 2011, 187(3):1495-1515.
[15] ZHANG Z, LIN G, CHEN J, et al. Inversion for elliptically anisotropicvelocity using VSP reflection traveltimes. Geophysical Prospecting, 2003, 51(2):159-166.
[16] 刘茂诚. 一个各向异性速度分析应用实例. 石油地球物理勘探, 2010, 45(4):525-529. LIU M C. An application case study for anisotropic velocity analysis. Oil Geophysical Prospecting, 2010, 45(4):525-529.
[1] XIAO Boya. Characteristics and favorable zone distribution of tuff reservoirt of Cretaceous in A’nan sag,Erlian Basin [J]. Lithologic Reservoirs, 2024, 36(6): 135-148.
[2] SU Hao, GUO Yandong, CAO Liying, YU Chen, CUI Shuyue, LU Ting, ZHANG Yun, LI Junchao. Natural depletion characteristics and pressure maintenance strategies of faultcontrolled fracture-cavity condensate gas reservoirs in Shunbei Oilfield [J]. Lithologic Reservoirs, 2024, 36(5): 178-188.
[3] ZHANG Wenbo, LI Ya, YANG Tian, PENG Siqiao, CAI Laixing, REN Qiqiang. Characteristics and diagenetic evolution of Permian pyroclastic reservoirs in Jianyang area,Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(2): 136-146.
[4] DAI Bo, WANG Leifei, ZHUANG Jian, YUAN Weibin, WANG Xuesheng. Experiment of minimum miscible pressure of CO2 flooding in ultra-low permeability reservoir [J]. Lithologic Reservoirs, 2020, 32(2): 129-133.
[5] LI Wei, LIU Ping, AI Nengping, SHAO Yuan, HOU Jingxian. Development characteristics and genetic mechanism of mid-deep reservoirs in Ledong area,Yinggehai Basin [J]. Lithologic Reservoirs, 2020, 32(1): 19-26.
[6] ZHANG Yichao, CHEN Minfeng, QU Dan, MAO Meifen, YANG Ziyou. Prediction method of well pattern infilling effect for ultra-low permeability reservoir in X oilfield [J]. Lithologic Reservoirs, 2020, 32(1): 144-151.
[7] ZHOU Rui, SU Yuliang, MA Bing, ZHANG Qi, WANG Wendong. CO2 huff and puff simulation in horizontal well with random fractal volume fracturing [J]. Lithologic Reservoirs, 2020, 32(1): 161-168.
[8] JIANG Ruizhong, ZHANG Fulei, CUI Yongzheng, PAN Hong, ZHANG Xu, ZHANG Chunguang, SHEN Zeyang. Pressure dynamic analysis of shale gas reservoirs considering stress sensitivity and complex migration [J]. Lithologic Reservoirs, 2019, 31(4): 149-156.
[9] JI Jinghao, XI Jiahui, ZENG Fenghuang, YANG Qigui. Unsteady productivity model of segmented multi-cluster fractured horizontal wells in tight oil reservoir [J]. Lithologic Reservoirs, 2019, 31(4): 157-164.
[10] JIANG Ruizhong, SHEN Zeyang, CUI Yongzheng, ZHANG Fulei, ZHANG Chunguang, YUAN Jianwei. Dynamical characteristics of inclined well in dual medium low permeability reservoir [J]. Lithologic Reservoirs, 2018, 30(6): 131-137.
[11] JIANG Tingxue, WANG Haitao, BIAN Xiaobing, LI Hongchun, LIU Jiankun, WU Chunfang, ZHOU Linbo. Volume fracturing technology for horizontal well and its application [J]. Lithologic Reservoirs, 2018, 30(3): 1-11.
[12] LIAO Mingguang, GUO Yunfei, YAO Jingli, LIAO Jijia, NAN Junxiang. Pore throat structure characteristics of Chang 31 reservoir in HuachiHeshui area, Ordos Basin [J]. Lithologic Reservoirs, 2018, 30(3): 17-26.
[13] YIN Daiyin, XIANG Junhui, WANG Dongqi. Classification of Fuyang oil reservoir with ultra-low permeability around placanticline of Daqing Oilfield [J]. Lithologic Reservoirs, 2018, 30(1): 150-154.
[14] ZHAO Xisen, DANG Hailong, PANG Zhenyu, SHI Pitong, CAO Shang, DING Lei, BAI Pu. Microscopic pore structure and seepage characteristics of different pore assemblage types in ultra low permeability reservoir:a case of Chang 6 reservoir in Tang 157 well area,Ganguyi Oilfield [J]. Lithologic Reservoirs, 2017, 29(6): 8-14.
[15] LI Youquan, HAN Xiuhong, YAN Yan, ZHANG Dezhi, ZHOU Zhiwei, MENG Fankun. Pressure transient analysis on CO2 huff and puff in low permeability reservoir [J]. Lithologic Reservoirs, 2017, 29(6): 119-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Lithologic Reservoirs, 2022, 34(2): 0 .
[2] LI Zaiguang,LI Lin. Automatic mapping based on well data[J]. Lithologic Reservoirs, 2007, 19(2): 84 -89 .
[3] CHENG Yuhong,GUO Yanru,ZHENG Ximing,FANG Naizhen,MA Yuhu. The interpretation method and application effect determined by multiple seismic and logging factors[J]. Lithologic Reservoirs, 2007, 19(2): 97 -101 .
[4] LIU Juntian,JIN Zhenjia,LI Zaiguang,TAN Xinping,GUO Lin,WANG Bo,LIU Yuxiang. Controlling factors for lithologic hydrocarbon reservoirs and petroleum prospecting target in Xiaocaohu area , Taibei Sag[J]. Lithologic Reservoirs, 2007, 19(3): 44 -47 .
[5] SHANG Changliang, FU Shouxian. Application of 3D seismic survey in loess tableland[J]. Lithologic Reservoirs, 2007, 19(3): 106 -110 .
[6] WANG Changyong, ZHENG Rongcai, WANG Jianguo, CAO Shaofang, Xiao Mingguo. Sedimentary characteristics and evolution of Badaowan Formation of Lower Jurassic in northwest margin of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(2): 37 -42 .
[7] WANG Ke1 LIU Xianyang, ZHAO Weiwei, SONG Jianghai, SHI Zhenfeng, XIANG Hui. Char acter istics and geological significance of seismites of Paleogene in Yangxin Subsag of J iyang Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 54 -59 .
[8] SUN Hongbin, ZHANG Fenglian. Structural-sedimentary evolution char acter istics of Paleogene in Liaohe Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 60 -65 .
[9] LI Chuanliang. Can uplift r esult in abnormal high pr essur e in formation?[J]. Lithologic Reservoirs, 2008, 20(2): 124 -126 .
[10] WEI Qinlian,ZHENG Rongcai,XIAO Ling,MA Guofu,DOU Shijie,TIAN Baozhong. Study on horizontal heterogeneity in Serie Inferiere of Triassic in 438b block , Algeria[J]. Lithologic Reservoirs, 2009, 21(2): 24 -28 .
TRENDMD: