Lithologic Reservoirs ›› 2020, Vol. 32 ›› Issue (1): 161-168.doi: 10.12108/yxyqc.20200118
ZHOU Rui1, SU Yuliang1, MA Bing2, ZHANG Qi3, WANG Wendong1
CLC Number:
[1] 王文东, 苏玉亮, 慕立俊, 等.致密油藏直井体积压裂储层改造体积的影响因素.中国石油大学学报(自然科学版), 2013, 37(3):93-97. WANG W D, SU Y L, MU L J, et al. Influencing factors of stimulated reservoir volume of vertical wells in tight oil reservoirs. Journal of China University of Petroleum(Science & Technology Edition), 2013, 37(3):93-97. [2] DANIELS J L, WATERS G A, LE CALVEZ J H, et al. Contacting more of the Barnett Shale through an integration of real-time microseismic monitoring,petrophysics,and hydraulic fracture design. SPE 110562, 2007. [3] GALE J F W, REED R M, HOLDER J. Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments. AAPG Bulletin, 2007, 91(4):603-622. [4] FISHER M K, WRIGHT C A, DAVIDSON B M, et al. Integrating fracture mapping technologies to improve stimulations in the Barnett shale. SPE Production & Facilities, 2005, 20(2):85-93. [5] HUANG J, SAFARI R, MUTLU U, et al. Natural-hydraulic fracture interaction:Microseismic observations and geomechanical predictions. Unconventional Resources Technology Conference, Denver, Colorado, 2014:1684-1705. [6] MAXWELL S C, STEINSBERGER N, ZINNO R. Microseismicimaging of hydraulic fracture complexity in the Barnett Shale. SPE 77440, 2002. [7] XU W Y, WENG X W, SUN J C, et al. Wiremesh:a novel shale fracturing simulator. SPE 132218, 2010. [8] CHEN Z M, LIAO X W, ZHAO X L, et al. A semianalytical approach for obtaining type curves of multiple-fractured horizontal wells with secondary-fracture networks. SPE Journal, 2016, 21(2):538-549. [9] 陈明强, 王宁, 张阳, 等. 渭北油田浅层油藏产能预测方法.岩性油气藏, 2017, 29(5):134-139. CHEN M Q, WANG N, ZHANG Y, et al. Productivity prediction method of shallow reservoir in Weibei Oilfield. Lithologic Reservoirs, 2017, 29(5):134-139. [10] ZHAO Y S, FENG Z C, LYU Z X, et al. Percolation laws of a fractal fracture-pore double medium. Fractals, 2016, 24(4):1650053. [11] WANG F Y, LIU Z C, JIAO L, et al. A fractal permeability model coupling boundary-layer effect for tight oil reservoirs. Fractals, 2017, 25(5):1750042. [12] WANG W D, SU Y L, YUAN B, et al. Numerical simulation of fluid flow through fractal-based discrete fractured network. Energies, 2018, 11(2):286. [13] ZHOU Z, SU Y, WANG W, et al. Application of the fractal geometry theory on fracture network simulation. Journal of Petroleum Exploration and Production Technology, 2017, 7(2):487-496. [14] YU W, AL-SHALABI E W, SEPEHRNOORI K. A sensitivity study of potential CO2 injection for enhanced gas recovery in Barnett shale reservoirs. SPE 169012, 2014. [15] SUN H, YAO J, GAO S H, et al. Numerical study of CO2 ehanced natural gas recovery and sequestration in shale gas reservoirs. International Journal of Greenhouse Gas Control, 2013, 19:406-419. [16] 李士伦, 汤勇, 侯承希.注CO2提高采收率技术现状及发展趋势.油气藏评价与开发, 2019, 9(3):1-8. LI S L, TANG Y, HOU C X. Present situation and development trend of CO2 injection enhanced oil recovery technology. Reservoir Evaluation and Development, 2019, 9(3):1-8. [17] 胡永乐, 郝明强, 陈国利, 等.中国CO2驱油与埋存技术及实践.石油勘探与开发, 2019, 46(4):716-727. HU Y L, HAO M Q, CHEN G L, et al. Technologies and practice of CO2 flooding and sequestration in China. Petroleum Exploration and Development, 2019, 46(4):716-727. [18] 陈兵, 白世星.二氧化碳输送与封存方式利弊分析.天然气化工(C1化学与化工), 2018, 43(2):114-118. CHEN B, BAI S X. Analysis of the advantages and disadvantages of carbon dioxide transportation and storage. Natural Gas Chemical Industry(C1 Chemistry & Chemical Engineering), 2018, 43(2):114-118. [19] 梁凯强, 王宏, 杨红, 等.延长油田CO2非混相驱地质封存潜力初步评价.断块油气田, 2018, 25(1):89-92. LIANG K Q, WANG H, YANG H, et al. Preliminary evaluation of CO2-EOR geological sequestration potential for Yanchang Oilfield. Fault-Block Oil & Gas Field, 2018, 25(1):89-92. [20] 赵兴雷, 崔倩, 王保登, 等.CO2地质封存项目环境监测评估体系初步研究.环境工程, 2018, 36(2):15-20. ZHAO X L, CUI Q, WANG B D, et al. Preliminary study on environmental monitoring assessment system for CO2 storage projects. Environmental Engineering, 2018, 36(2):15-20. [21] STALGOROVA K, MATTAR L. Analytical model for unconventional multifractured composite systems. SPE Reservoir Evaluation & Engineering, 2013, 16(3):246-256. [22] TALEGHANI D A, OLSON J E. How natural fractures could affect hydraulic-fracture geometry. SPE Journal, 2013, 19(1):161-171. [23] 徐光黎.岩石结构面几何特征的分形与分维.水文地质工程地质, 1993, 20(2):20-22. XU G L. Fractal and fractal dimension of geometric features of rock structural planes. Hydrogeology and Engineering Geology, 1993, 20(2):20-22. [24] LA POINTE P. R. A method to characterize fracture density and connectivity through fractal geometry. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1988, 25(6):421-429. [25] 丁永胜, 堵秀凤, 张水胜.Matlab分形植物模拟.齐齐哈尔大学学报(自然科学版), 2008, 24(3):63-66. DING Y S, DU X F, ZHANG S S. fractal plant simulation based on Matlab. Journal of Qiqihar University(Natural Science Edition), 2008, 24(3):63-66. [26] HUANG J I, KIM K. Fracture process zone development during hydraulic fracturing. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993, 30(7):1295-1298. [27] JONES J R, VOLZ R, DJASMARI W. Fracture complexity impacts on pressure transient responses from horizontal wells completed with multiple hydraulic fracture stages. SPE 167120, 2013. [28] VINCENT M C. Optimizing transverse fractures in liquid-rich formations. SPE 146376, 2011. [29] GONG B, QIN G, TOWLER B F, et al. Discrete modeling of natural and hydraulic fractures in shale-gas reservoirs. SPE 146842, 2011. |
|