Lithologic Reservoirs ›› 2020, Vol. 32 ›› Issue (1): 161-168.doi: 10.12108/yxyqc.20200118

Previous Articles    

CO2 huff and puff simulation in horizontal well with random fractal volume fracturing

ZHOU Rui1, SU Yuliang1, MA Bing2, ZHANG Qi3, WANG Wendong1   

  1. 1. School of Petroleum Engineering, China University of Petroleum(East China), Qingdao 266580, Shandong, China;
    2. Research Institute of Oil and Gas Technology, PetroChina Changqing Oilfield Company, Xi'an 710018, China;
    3. School of Earth Resources, China University of Geosciences(Wuhan), Wuhan 430074, China
  • Received:2019-05-07 Revised:2019-08-27 Online:2020-01-21 Published:2019-11-22

Abstract: At present,the horizontal drilling with large-scale hydraulic fracturing is the main technology to mine shale gas while volumetric fracturing would induce cracks underground and communicate natural cracks to form complex fracture networks eventually. In order to simulate the seepage flow of shale gas in the complex fracture network and characterize the network on the shale gas model,a random fractal network model was established through a two-porosity component simulator combined with the random fractal geometry system. Based on the above model,five schemes for carbon dioxide stimulation to extract shale gas were further studied. The results show that CO2 huff and puff can significantly increase the production of shale gas,and the increase of injection pressure and injection time can improve the ultimate recovery. The latter has the optimal value in the process of shale gas production,and too early or too late injection timing will make the production worse,and there is an optimal injection timing range in each CO2 injection cycle. The fractal fracture network model provides a theoretical basis for further research on the simulation of fracture CO2 huff and puff production of shale gas reservoir.

Key words: shale gas, volumetric fracturing, fractal geometry, CO2 huff and puff, numerical simulation

CLC Number: 

  • TE357
[1] 王文东, 苏玉亮, 慕立俊, 等.致密油藏直井体积压裂储层改造体积的影响因素.中国石油大学学报(自然科学版), 2013, 37(3):93-97. WANG W D, SU Y L, MU L J, et al. Influencing factors of stimulated reservoir volume of vertical wells in tight oil reservoirs. Journal of China University of Petroleum(Science & Technology Edition), 2013, 37(3):93-97.
[2] DANIELS J L, WATERS G A, LE CALVEZ J H, et al. Contacting more of the Barnett Shale through an integration of real-time microseismic monitoring,petrophysics,and hydraulic fracture design. SPE 110562, 2007.
[3] GALE J F W, REED R M, HOLDER J. Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments. AAPG Bulletin, 2007, 91(4):603-622.
[4] FISHER M K, WRIGHT C A, DAVIDSON B M, et al. Integrating fracture mapping technologies to improve stimulations in the Barnett shale. SPE Production & Facilities, 2005, 20(2):85-93.
[5] HUANG J, SAFARI R, MUTLU U, et al. Natural-hydraulic fracture interaction:Microseismic observations and geomechanical predictions. Unconventional Resources Technology Conference, Denver, Colorado, 2014:1684-1705.
[6] MAXWELL S C, STEINSBERGER N, ZINNO R. Microseismicimaging of hydraulic fracture complexity in the Barnett Shale. SPE 77440, 2002.
[7] XU W Y, WENG X W, SUN J C, et al. Wiremesh:a novel shale fracturing simulator. SPE 132218, 2010.
[8] CHEN Z M, LIAO X W, ZHAO X L, et al. A semianalytical approach for obtaining type curves of multiple-fractured horizontal wells with secondary-fracture networks. SPE Journal, 2016, 21(2):538-549.
[9] 陈明强, 王宁, 张阳, 等. 渭北油田浅层油藏产能预测方法.岩性油气藏, 2017, 29(5):134-139. CHEN M Q, WANG N, ZHANG Y, et al. Productivity prediction method of shallow reservoir in Weibei Oilfield. Lithologic Reservoirs, 2017, 29(5):134-139.
[10] ZHAO Y S, FENG Z C, LYU Z X, et al. Percolation laws of a fractal fracture-pore double medium. Fractals, 2016, 24(4):1650053.
[11] WANG F Y, LIU Z C, JIAO L, et al. A fractal permeability model coupling boundary-layer effect for tight oil reservoirs. Fractals, 2017, 25(5):1750042.
[12] WANG W D, SU Y L, YUAN B, et al. Numerical simulation of fluid flow through fractal-based discrete fractured network. Energies, 2018, 11(2):286.
[13] ZHOU Z, SU Y, WANG W, et al. Application of the fractal geometry theory on fracture network simulation. Journal of Petroleum Exploration and Production Technology, 2017, 7(2):487-496.
[14] YU W, AL-SHALABI E W, SEPEHRNOORI K. A sensitivity study of potential CO2 injection for enhanced gas recovery in Barnett shale reservoirs. SPE 169012, 2014.
[15] SUN H, YAO J, GAO S H, et al. Numerical study of CO2 ehanced natural gas recovery and sequestration in shale gas reservoirs. International Journal of Greenhouse Gas Control, 2013, 19:406-419.
[16] 李士伦, 汤勇, 侯承希.注CO2提高采收率技术现状及发展趋势.油气藏评价与开发, 2019, 9(3):1-8. LI S L, TANG Y, HOU C X. Present situation and development trend of CO2 injection enhanced oil recovery technology. Reservoir Evaluation and Development, 2019, 9(3):1-8.
[17] 胡永乐, 郝明强, 陈国利, 等.中国CO2驱油与埋存技术及实践.石油勘探与开发, 2019, 46(4):716-727. HU Y L, HAO M Q, CHEN G L, et al. Technologies and practice of CO2 flooding and sequestration in China. Petroleum Exploration and Development, 2019, 46(4):716-727.
[18] 陈兵, 白世星.二氧化碳输送与封存方式利弊分析.天然气化工(C1化学与化工), 2018, 43(2):114-118. CHEN B, BAI S X. Analysis of the advantages and disadvantages of carbon dioxide transportation and storage. Natural Gas Chemical Industry(C1 Chemistry & Chemical Engineering), 2018, 43(2):114-118.
[19] 梁凯强, 王宏, 杨红, 等.延长油田CO2非混相驱地质封存潜力初步评价.断块油气田, 2018, 25(1):89-92. LIANG K Q, WANG H, YANG H, et al. Preliminary evaluation of CO2-EOR geological sequestration potential for Yanchang Oilfield. Fault-Block Oil & Gas Field, 2018, 25(1):89-92.
[20] 赵兴雷, 崔倩, 王保登, 等.CO2地质封存项目环境监测评估体系初步研究.环境工程, 2018, 36(2):15-20. ZHAO X L, CUI Q, WANG B D, et al. Preliminary study on environmental monitoring assessment system for CO2 storage projects. Environmental Engineering, 2018, 36(2):15-20.
[21] STALGOROVA K, MATTAR L. Analytical model for unconventional multifractured composite systems. SPE Reservoir Evaluation & Engineering, 2013, 16(3):246-256.
[22] TALEGHANI D A, OLSON J E. How natural fractures could affect hydraulic-fracture geometry. SPE Journal, 2013, 19(1):161-171.
[23] 徐光黎.岩石结构面几何特征的分形与分维.水文地质工程地质, 1993, 20(2):20-22. XU G L. Fractal and fractal dimension of geometric features of rock structural planes. Hydrogeology and Engineering Geology, 1993, 20(2):20-22.
[24] LA POINTE P. R. A method to characterize fracture density and connectivity through fractal geometry. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1988, 25(6):421-429.
[25] 丁永胜, 堵秀凤, 张水胜.Matlab分形植物模拟.齐齐哈尔大学学报(自然科学版), 2008, 24(3):63-66. DING Y S, DU X F, ZHANG S S. fractal plant simulation based on Matlab. Journal of Qiqihar University(Natural Science Edition), 2008, 24(3):63-66.
[26] HUANG J I, KIM K. Fracture process zone development during hydraulic fracturing. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993, 30(7):1295-1298.
[27] JONES J R, VOLZ R, DJASMARI W. Fracture complexity impacts on pressure transient responses from horizontal wells completed with multiple hydraulic fracture stages. SPE 167120, 2013.
[28] VINCENT M C. Optimizing transverse fractures in liquid-rich formations. SPE 146376, 2011.
[29] GONG B, QIN G, TOWLER B F, et al. Discrete modeling of natural and hydraulic fractures in shale-gas reservoirs. SPE 146842, 2011.
[1] CUI Chuanzhi, LI Jing, WU Zhongwei. Simulation of microscopic seepage characteristics of CO2 immiscible flooding under the effect of diffusion and adsorption [J]. Lithologic Reservoirs, 2024, 36(6): 181-188.
[2] YAN Jianping, LAI Siyu, GUO Wei, SHI Xuewen, LIAO Maojie, TANG Hongming, HU Qinhong, HUANG Yi. Research progress on casing deformation types and influencing factors in geological engineering of shale gas wells [J]. Lithologic Reservoirs, 2024, 36(5): 1-14.
[3] YANG Xuefeng, ZHAO Shengxian, LIU Yong, LIU Shaojun, XIA Ziqiang, XU Fei, FAN Cunhui, LI Yutong. Main controlling factors of shale gas enrichment of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Ningxi area,Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 99-110.
[4] BAO Hanyong, ZHAO Shuai, ZHANG Li, LIU Haotian. Exploration achievements and prospects for shale gas of Middle-Upper Permian in Hongxing area,eastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(4): 12-24.
[5] SHEN Youyi, WANG Kaifeng, TANG Shuheng, ZHANG Songhang, XI Zhaodong, YANG Xiaodong. Geological modeling and“sweet spot”prediction of Permian coal measures shale reservoirs in Yushe-Wuxiang block,Qinshui Basin [J]. Lithologic Reservoirs, 2024, 36(4): 98-108.
[6] DUAN Yifei, ZHAO Weiwei, YANG Tianxiang, LI Fukang, LI Hui, WANG Jianan, LIU Yuchen. Source-reservoir characteristics and accumulation rules of shale gas of Permian Shanxi Formation in Yan'an area, Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(3): 72-83.
[7] CHENG Jing, YAN Jianping, SONG Dongjiang, LIAO Maojie, GUO Wei, DING Minghai, LUO Guangdong, LIU Yanmei. Low resistivity response characteristics and main controlling factors of shale gas reservoirs of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Changning area,southern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(3): 31-39.
[8] JI Yubing, GUO Bingru, MEI Jue, YIN Zhijun, ZOU Chen. Fracture modeling of shale reservoirs of Silurian Longmaxi Formation in Luobu syncline in Zhaotong National Shale Gas Demonstration Area, southern margin of Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(3): 137-145.
[9] LIU Renjing, LU Wenming. Mechanism and field practice of enhanced oil recovery by injection-production coupling in fault block reservoirs [J]. Lithologic Reservoirs, 2024, 36(3): 180-188.
[10] BAO Hanyong, LIU Chao, GAN Yuqing, XUE Meng, LIU Shiqiang, ZENG Lianbo, MA Shijie, LUO Liang. Paleotectonic stress field and fracture characteristics of shales of Ordovician Wufeng Formation to Silurian Longmaxi Formation in southern Fuling area,Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(1): 14-22.
[11] YANG Bowei, SHI Wanzhong, ZHANG Xiaoming, XU Xiaofeng, LIU Yuzuo, BAI Luheng, YANG Yang, CHEN Xianglin. Pore structure characteristics and gas-bearing properties of shale gas reservoirs of Lower Carboniferous Dawuba Formation in southern Guizhou [J]. Lithologic Reservoirs, 2024, 36(1): 45-58.
[12] WEI Quanchao, LI Xiaojia, LI Feng, HAO Jingyu, DENG Shuanglin, WU Juan, DENG Bin, WANG Daojun. Development characteristics and significance of fracture veins of Lower Cambrian Qiongzhusi Formation in Wangcang area at Micang Mountain front, Sichuan Basin [J]. Lithologic Reservoirs, 2023, 35(5): 62-70.
[13] LI Fengfeng, NI Xiaowei, XU Sihui, WEI Xinlu, LIU Diren. Response characteristics and correction of LWD laterolog in anisotropic formations and deviated boreholes [J]. Lithologic Reservoirs, 2023, 35(3): 161-168.
[14] YANG Yueming, ZHANG Shaomin, JIN Tao, MING Ying, GUO Ruiying, WANG Xingzhi, HAN Luyuan. Characteristics and exploration potential of shale reservoirs of Permian Longtan Formation in southern Sichuan Basin [J]. Lithologic Reservoirs, 2023, 35(1): 1-11.
[15] Lü Dongliang, YANG Jian, LIN Liming, ZHANG Kaili, CHEN Yanhu. Characterization model of oil-water relative permeability curves of sandstone reservoir and its application in numerical simulation [J]. Lithologic Reservoirs, 2023, 35(1): 145-159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Zhanlong,ZHANG Zhenggang,CHEN Qilin,GUO Jingyi,SHA Xuemei,LIU Wensu. Using multi-parameters analysis of seismic information to evaluate lithologic traps in continental basins[J]. Lithologic Reservoirs, 2007, 19(4): 57 -63 .
[2] FANG Chaohe, WANG Yifeng, ZHENG Dewen, GE Zhixin. Maceral and petrology of Lower Tertiary source rock in Qintong Sag, Subei Basin[J]. Lithologic Reservoirs, 2007, 19(4): 87 -90 .
[3] LIN Chengyan, TAN Lijuan, YU Cuiling. Research on the heterogeneous distribution of petroleum(Ⅰ)[J]. Lithologic Reservoirs, 2007, 19(2): 16 -21 .
[4] WANG Tianqi, WANG Jiangong, LIANG Sujuan, SHA Xuemei. Fine oil exploration of Putaohua Formation in Xujiaweizi area, Songliao Basin[J]. Lithologic Reservoirs, 2007, 19(2): 22 -27 .
[5] WANG Xiwen,SHI Lanting,YONG Xueshan,YNAG Wuyang. Study on seismic impedance inversion[J]. Lithologic Reservoirs, 2007, 19(3): 80 -88 .
[6] HE Zongbin,NI Jing,WU Dong,LI Yong,LIU Liqiong,TAI Huaizhong. Hydrocarbon saturation determined by dual-TE logging[J]. Lithologic Reservoirs, 2007, 19(3): 89 -92 .
[7] YUAN Shengxue,WANG Jiang. Identification of the shallow gas reservoir in Shanle area,Tuha Basin[J]. Lithologic Reservoirs, 2007, 19(3): 111 -113 .
[8] CHEN Fei,WEI Dengfeng,YU Xiaolei,WU Shaobo. Sedimentary facies of Chang 2 oil-bearing member of Yanchang Formation in Yanchi-Dingbian area, Ordos Basin[J]. Lithologic Reservoirs, 2010, 22(1): 43 -47 .
[9] XU Yunxia,WANG Shanshan,YANG Shuai. Using Walsh transform to improve signal-to-noise ratio of seismic data[J]. Lithologic Reservoirs, 2009, 21(3): 98 -100 .
[10] LI Jianming,SHI Lingling,WANG Liqun,WU Guangda. Characteristics of basement reservoir in Kunbei fault terrace belt in southwestern Qaidam Basin[J]. Lithologic Reservoirs, 2011, 23(2): 20 -23 .
TRENDMD: