Lithologic Reservoirs ›› 2022, Vol. 34 ›› Issue (5): 50-62.doi: 10.12108/yxyqc.20220504

• PETROLEUM EXPLORATION • Previous Articles     Next Articles

Microscopic pore structure characteristics of shale of Ordovician Wulalike Formation in western Ordos Basin

ZHANG Fengqi1,2, LI Yinong1,2,3, LUO Julan3, REN Xiaofeng3, ZHANG Lanxin1,2, ZHANG Jieyu1,2   

  1. 1. School of Earth Sciences and Engineering, Xi'an Shiyou University, Xi'an 710065, China;
    2. Shaanxi Key Laboratory of Petroleum Accumulation Geology, Xi'an Shiyou University, Xi'an 710065, China;
    3. CNPC Logging Co., Ltd., Xi'an 710077, China
  • Received:2022-01-29 Revised:2022-04-24 Online:2022-09-01 Published:2022-09-06

Abstract: By means of argon ion polishing field emission scanning electron microscope observation,X-ray dif-fraction analysis,helium porosity measurement,cryogenic nitrogen adsorption-desorption and other experimental methods,combined with FHH fractal theory model,the microscopic pore structure characteristics of different types of shale of Ordovician Wulalike Formation in western Ordos Basin were characterized. The results show that:(1)The study area has complex mineral composition,relatively stable clay mineral content,high brittle mineral content and wide variation range. It can be divided into three types of lithofacies,including siliceous shale lithofacies,mixed shale lithofacies and calcareous shale lithofacies from bottom to top.(2)The overall porosity of the study area is low,mainly ranging from 0.16% to 1.50%,with an average of 1.20%. Microfracture development results in a small amount of porosity greater than 4.00%. Siliceous shale has the highest porosity,calcareous shale has the lowest porosity,and mixed shale has the porosity between them. The pore types are complex and closely related to lithofacies. The calcareous shale is compact as a whole,dominated by intercrystalline pores and dissolved pores,and mainly slit pores. The pores of siliceous shale are relatively developed,which are mostly intergranular pores,interlayer fractures and microfractures of clay minerals. The open pores are mainly flat,and inkbottle shaped amorphous pores are occasionally seen.(3)The pore structure in the study area can be divided into three types. TypeⅠis mainly composed of 2-4 nm mesopores,with large pore volume and well-developed mesopores,which are common in siliceous shale. Type Ⅱ is dominated by 0-4 nm micropores and mesopores,with less macro-pores,which are common in siliceous shales and mixed rocks. Type Ⅲ is dominated by 50-100 nm macropores,but small in size,which are common in calcareous shale.(4)The microscopic pore structure of shale in the study area has obvious fractal characteristics,complex internal structure and strong heterogeneity. The higher the TOC,clay minerals and quartz content,the more complex the pore structure and pore surface.(5)The siliceous shale reservoir in the study area has the best pore structure and is rich in organic matter,which is the most favorable exploration target.

Key words: pore structure, fractal dimension, adsorption hysteresis loop, nitrogen adsorption method, shale lithofacies, Wulalike Formation, Ordovician, Ordos Basin

CLC Number: 

  • TE132.2
[1] 邹才能,朱如凯,白斌,等.中国油气储层中纳米孔首次发现及其科学价值[J].岩石学报,2011,27(6):1857-1864. ZOU Caineng,ZHU Rukai,BAI Bin,et al. First discovery of nanopore throat in oil and gas reservoir in China and its scientific value[J]. Acta Petrologica Sinica,2011,27(6):1857-1864.
[2] 朱炎铭,王阳,陈尚斌,等.页岩储层孔隙结构多尺度定性-定量综合表征:以上扬子海相龙马溪组为例[J]. 地学前缘, 2016,23(1):154-163. ZHU Yanming,WANG Yang,CHEN Shangbin,et al. Qualitativequantitative multiscale characterization of pore structures in shale reservoirs:A case study of Longmaxi Formation in the Upper Yangtze area[J]. Earth Science Frontiers,2016,23(1):154-163.
[3] 陈尚斌,朱炎铭,王红岩,等.川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J].煤炭学报,2012,37(3):438-444. CHEN Shangbin,ZHU Yanming,WANG Hongyan,et al. Struc- ture characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J]. Journal of China Coal Society,2012,37(3):438-444.
[4] 杨峰,宁正福,孔德涛,等.高压压汞法和氮气吸附法分析页岩孔隙结构[J].天然气地球科学,2013,24(3):450-455. YANG Feng,NING Zhengfu,KONG Detao,et al. Pore struc- ture of shale from high pressure mercury injection and nitrogen adsorption method[J]. Natural Gas Geoscience,2013,24(3):450-455.
[5] 杨峰,宁正福,王庆,等.页岩纳米孔隙分形特征[J].天然气地球科学,2014,25(4):618-623. YANG Feng,NING Zhengfu,WANG Qing,et al. Fractal characteristics of nanopore in shale[J]. Natural Gas Geoscience,2014, 25(4):618-623.
[6] 杨峰,宁正福,张世栋,等.基于氮气吸附实验的页岩孔隙结构表征[J].天然气工业,2013,33(4):135-140. YANG Feng,NING Zhengfu,ZHANG Shidong,et al. Charac- terization of pore structures in shales through nitrogen adsorption experiment[J]. Natural Gas Industry,2013,33(4):135-140.
[7] 吉利明,邱军利,夏燕青,等.常见黏土矿物电镜扫描微孔隙特征与甲烷吸附性[J].石油学报,2012,33(2):249-256. JI Liming,QIU Junli,XIA Yanqing,et al. Micro-pore characteristics and methane adsorption properties of common clay minerals by electron microscope scanning[J]. Acta Petrolei Sinica,2012, 33(2):249-256.
[8] 侯宇光,何生,易积正,等.页岩孔隙结构对甲烷吸附能力的影响[J].石油勘探与开发,2014,41(2):248-256. HOU Yuguang,HE Sheng,YI Jizheng,et al. Effect of pore struc- ture on methane sorption capacity of shales[J]. Petroleum Ex- ploration and Development,2014,41(2):248-256.
[9] 郭旭升,李宇平,刘若冰,等.四川盆地焦石坝地区龙马溪组页岩微观孔隙结构特征及其控制因素[J].天然气工业,2014, 34(6):9-16. GUO Xusheng,LI Yuping,LIU Ruobing,et al. Characteristics and controlling factors of micro-pore structures of Longmaxi shale play in the Jiaoshiba area,Sichuan Basin[J]. Natural Gas Industry, 2014,34(6):9-16.
[10] 席胜利,莫午零,刘新社,等.鄂尔多斯盆地西缘奥陶系乌拉力克组页岩气勘探潜力:以忠平1 井为例[J].天然气地球科学,2021,32(8):1235-1246. XI Shengli,MO Wuling,LIU Xinshe,et al. Shale gas exploration potential of Ordovician Wulalike Formation in the western margin of Ordos Basin:Case study of well Zhongping 1[J]. Natural Gas Geoscience,2021,32(8):1235-1246.
[11] 马占荣,白海峰,刘宝宪,等.鄂尔多斯西部地区中-晚奥陶世克里摩里期-乌拉力克期岩相古地理[J]. 古地理学报, 2013,15(6):751-764. MA Zhanrong,BAI Haifeng,LIU Baoxian,et al. Lithofacies palaeogeography of the Middle-Late Ordovician Kelimoli and Wu- lalike ages in western Ordos area[J]. Journal of Palaeogeography (Chinese Edition),2013,15(6):751-764.
[12] 付锁堂,付金华,席胜利,等.鄂尔多斯盆地奥陶系海相页岩气地质特征及勘探前景[J].中国石油勘探,2021,26(2):33-44. FU Suotang,FU Jinhua,XI Shengli,et al. Geological characteristics of Ordovician marine shale gas in the Ordos Basin and its prospects[J]. China Petroleum Exploration,2021,26(2):33-44.
[13] 杨华,陶家庆,欧阳征健,等.鄂尔多斯盆地西缘构造特征及其成因机制[J]. 西北大学学报(自然科学版),2011,41(5):863-868. YANG Hua,TAO Jiaqing,OUYANG Zhengjian,et al. Structural characteristics and forming mechanism in the western margin of the Ordos Basin[J]. Journal of Northwest University(Natural Science Edition),2011,41(5):863-868.
[14] 吴东旭,周进高,吴兴宁,等.鄂尔多斯盆地西缘早中奥陶世岩相古地理研究[J].高校地质学报,2018,24(5):747-760. WU Dongxu,ZHOU Jingao,WU Xingning,et al. Lithofacies and palaeogeography of the Early-Middle Ordovician in the western Ordos Basin[J]. Geological Journal of China Universities,2018, 24(5):747-760.
[15] 吴东旭,吴兴宁,李程善,等.鄂尔多斯盆地西部奥陶系乌拉力克组烃源岩沉积模式及生烃潜力[J].海相油气地质,2021, 26(2):123-130. WU Dongxu,WU Xingning,LI Chengshan,et al. Sedimentary model and hydrocarbon-generation potential of source rock of the Ordovician Ulalik Formation in western Ordos Basin[J]. Marine Origin Petroleum Geology,2021,26(2):123-130.
[16] 石油地质勘探专业标准化委员会.沉积岩中黏土矿物和常见非黏土矿物X射线衍射分析方法:SY/T 5163-2018[S].北京:石油工业出版社,2018. Petroleum Exploration Standardization Technical Committee. Analysis method for clay mineral and ordinary non-clay minerals in sedimentary rocks by the X-ray diffraction:SY/T 5163-2018[S]. Beijing:Petroleum Industry Press,2018.
[17] 梁志凯,李卓,李连霞,等.松辽盆地长岭断陷沙河子组页岩孔径多重分形特征与岩相的关系[J]. 岩性油气藏,2020,32(6):22-35. LIANG Zhikai,LI Zhuo,LI Lianxia,et al. Relationship between multifractal characteristics of pore size and lithofacies of shale of Shahezi Formation in Changling fault depression,Songliao Basin[J]. Lithologic Reservoirs,2020,32(6):22-35.
[18] 谢庆宾,王佳,宋姝豫,等.昭通示范区龙马溪组页岩气高产储层微观孔隙结构定量表征[J]. 新疆石油天然气,2021,17(3):7-17. XIE Qingbin,WANG Jia,SONG Shuyu,et al. Quantitative characterization of microscopic pore structures for the high-yield- ing shale gas reservoir of Longmaxi Formation in Zhaotong demonstration zone[J]. Xinjiang Oil & Gas,2021,17(3):7-17.
[19] 全国石油天然气标准化技术委员会. 岩心分析方法:GB/T29172-2012[S].北京:中国标准出版社,2012. National Petroleum and Natural Gas Standardization Technical Committee. Practices for core analysis:GB/T29172-2012[S]. Beijing:Standards Press of China,2012.
[20] 石油地质勘探专业标准化委员会.岩石样品扫描电子显微镜分析方法:SY/T 5162-2014[S].北京:石油工业出版社,2014. Petroleum Exploration Standardization Technical Committee. An- alytical method of rock sample by scanning electron microscope:SY/T 5162-2014[S]. Beijing:Petroleum Industry Press,2014.
[21] 石油地质勘探专业标准化委员会.岩石比表面积和孔径分布测定静态吸附容量法:SY/T6154-2019[S].北京:石油工业出版社,2019. Petroleum Exploration Standardization Technical Committee. Determination of specific surface and pore size distribution of rocks-Static adsorption capacity method:SY/T6154-2019[S]. Beijing:Petroleum Industry Press,2014.
[22] 陈居凯,朱炎铭,崔兆帮,等.川南龙马溪组页岩孔隙结构综合表征及其分形特征[J].岩性油气藏,2018,30(1):55-62. CHEN Jukai,ZHU Yanming,CUI Zhaobang,et al. Pore structure and fractal characteristics of Longmaxi shale in southern Sichuan Basin[J]. Lithologic Reservoirs,2018,30(1):55-62.
[23] 谢晓永,唐洪明,王春华,等.氮气吸附法和压汞法在测试泥页岩孔径分布中的对比[J].天然气工业,2006,26(12):100-102. XIE Xiaoyong,TANG Hongming,WANG Chunhua,et al. Con- trast of nitrogen adsorption method and mercury porosimetry method in analysis of shale's pore size distribution[J]. Natural Gas Industry,2006,26(12):100-102.
[24] 郑珊珊,刘洛夫,汪洋,等.川南地区五峰组-龙马溪组页岩微观孔隙结构特征及主控因素[J].岩性油气藏,2019,31(3):55-65. ZHENG Shanshan,LIU Luofu,WANG Yang,et al. Characteris- tics of microscopic pore structures and main controlling factors of Wufeng-Longmaxi Formation shale in southern Sichuan Basin[J]. Lithologic Reservoirs,2019,31(3):55-65.
[25] LOUCKS R G,REED R M,RUPPEL S C,et al. Morphology, genesis and distribution of nanometer-scale pores in Siliceous mudstone of the Mississippian Barnett Shale[J]. Journal of Sedi- mentary Research,2009,79(12):848-861.
[26] 陈相霖,郭天旭,石砥石,等.陕南地区牛蹄塘组页岩孔隙结构特征及吸附能力[J].岩性油气藏,2019,31(5):52-60. CHEN Xianglin,GUO Tianxu,SHI Dishi,et al. Pore structure characteristics and adsorption capacity of Niutitang Formation shale in southern Shaanxi[J]. Lithologic Reservoirs,2019,31(5):52-60.
[27] 赵迪斐,郭英海,解徳录,等.基于低温氮吸附实验的页岩储层孔隙分形特征[J].东北石油大学学报,2014,38(6):100-108. ZHAO Difei,GUO Yinghai,XIE Delu,et al. Fractal characteristics of shale reservoir pores based on nitrogen adsorption[J]. Journal of Northeast Petroleum University,2014,38(6):100-108.
[28] THOMMES M,KANEKO K,NEIMARK A V,et al. Physisorp- tion of gases,with special reference to the evaluation of surface area and pore size distribution(IUPAC Technical Report)[J]. Pure and Applied Chemistry,2015,87(9/10):1051-1069.
[29] 庞河清,曾焱,刘成川,等.基于氮气吸附-核磁共振-氩离子抛光场发射扫描电镜研究川西须五段泥质岩储层孔隙结构[J]. 岩矿测试,2017,36(1):66-74. PANG Heqing,ZENG Yan,LIU Chengchuan,et al. Investigation of pore structure of an argillaceous rocks reservoir in the 5th member of Xujiahe Formation in western Sichuan,using NAM, NMR and AIP-FESEM[J]. Rock and Mineral Analysis,2017, 36(1):66-74.
[30] 郭娟,赵迪斐,梁孝柏,等.页岩纳米孔隙的结构量化表征:以川东南地区五峰组为例[J].岩性油气藏,2020,32(5):113-121. GUO Juan,ZHAO Difei,LIANG Xiaobo,et al. Quantitative characterization of shale nanopore structure:A case study of Wufeng Formation in southeastern Sichuan[J]. Lithologic Reservoirs, 2020,32(5):113-121.
[31] BROEKHOFF J,DEBOER J,et al. Studies on pore systems in catalysts:XIII. Pore distributions from the desorption branch of a nitrogen sorption isotherm in the case of cylindrical pores B. Applications-ScienceDirect[J]. Journal of Catalysis,1968,10(4),377-390.
[32] 肖磊,李卓,杨有东,等.渝东南下志留统龙马溪组不同岩相页岩的孔隙结构与分形特征[J].科学技术与工程,2021,21(2):512-521. XIAO Lei,LI Zhuo,YANG Youdong,et al. Pore structure and fractal characteristics of different lithofacies shales of the Lower Silurian Longmaxi Formation in southeast Chongqing[J]. Sci- ence Technology and Engineering,2021,21(2):512-521.
[33] 朱汉卿,贾爱林,位云生,等.基于氩气吸附的页岩纳米级孔隙结构特征[J].岩性油气藏,2018,30(2):77-84. ZHU Hanqing,JIA Ailin,WEI Yunsheng,et al. Nanopore struc- ture characteristics of shale based on Ar adsorption[J]. Lithologic Reservoirs,2018,30(2):77-84.
[1] XUE Nan, SHAO Xiaozhou, ZHU Guangyou, ZHANG Wenxuan, QI Yalin, ZHANG Xiaolei, OUYANG Siqi, WANG Shumin. Geochemical characteristics and formation environment of source rocks of Triassic Chang 7 member in northern Pingliang area,Ordos Basin [J]. Lithologic Reservoirs, 2023, 35(3): 51-65.
[2] BAI Yang, ZHANG Xiaolei, GANG Wenzhe, ZHANG Zhongyi, YANG Shangru, PANG Jinlian, CAO Jingjing, HOU Yunchao. Characteristics and genesis of Upper Triassic Chang 8 reservoir with low oil saturation in northern Pingliang area, Ordos Basin [J]. Lithologic Reservoirs, 2023, 35(3): 66-75.
[3] SONG Xingguo, CHEN Shi, YANG Minghui, XIE Zhou, KANG Pengfei, LI Ting, CHEN Jiuzhou, PENG Zijun. Development characteristics of F16 fault in Fuman oilfield of Tarim Basin and its influence on oil and gas distribution [J]. Lithologic Reservoirs, 2023, 35(3): 99-109.
[4] BU Xuqiang, WANG Laiyuan, ZHU Lianhua, HUANG Cheng, ZHU Xiuxiang. Characteristics and reservoir accumulation model of Ordovician fault-controlled fractured-vuggy reservoirs in Shunbei oil and gas field,Tarim Basin [J]. Lithologic Reservoirs, 2023, 35(3): 152-160.
[5] XIAO Ling, CHEN Xi, LEI Ning, YI Tao, GUO Wenjie. Characteristics and main controlling factors of shale oil reservoirs of Triassic Chang 7 member in Heshui area, Ordos Basin [J]. Lithologic Reservoirs, 2023, 35(2): 80-93.
[6] NI Xinfeng, SHEN Anjiang, QIAO Zhanfeng, ZHENG Jianfeng, ZHENG Xingping, YANG Zhao. Genesis and exploration enlightenment of Ordovician fracture-vuggy carbonate karst reservoirs in Tarim Basin [J]. Lithologic Reservoirs, 2023, 35(2): 144-158.
[7] YAO Xiutian, WANG Chao, YAN Sen, WANG Mingpeng, LI Wan. Reservoir sensitivity of Neogene Guantao Formation in Zhanhua Sag, Bohai Bay Basin [J]. Lithologic Reservoirs, 2023, 35(2): 159-168.
[8] MA Dongye, CHEN Yuhang, ZHAO Jingzhou, WU Weitao, SONG Ping, CHEN Mengna. Architectural elements of fluvial sand bodies of the eighth member of Permian Xiashihezi Formation in eastern Ordos Basin [J]. Lithologic Reservoirs, 2023, 35(1): 63-73.
[9] WEN Zhigang, LUO Yushu, LIU Jiangyan, ZHAO Chunyu, LI Shixiang, TIAN Weichao, FAN Yunpeng, GAO Heting. Pore structure characteristics and genetic mechanism of Triassic Chang 7 shale oil reservoir in Longdong area [J]. Lithologic Reservoirs, 2022, 34(6): 47-59.
[10] WEI Xin, TANG Jianyun, SONG Hongxia, CHEN Yubao. Geochemical characteristics and hydrocarbon generation potential of Upper Paleozoic source rocks in Ganquan area,Ordos Basin [J]. Lithologic Reservoirs, 2022, 34(6): 92-100.
[11] MI Weiwei, XIE Xiaofei, CAO Hongxia, MA Qiang, DU Yonghui, ZHANG Qiong, DENG Changsheng, SONG Jiaxuan. Characteristics and main controlling factors of tight sandstone reservoirs of Permian Shan 2 to He 8 members in southeastern Ordos Basin [J]. Lithologic Reservoirs, 2022, 34(6): 101-117.
[12] CHEN Zhonghong, CHAI Zhi. Difference of maturity parameters of mixed crude oil and its geological significance:A case study of Ordovician in Tuofutai area,Tabei uplift [J]. Lithologic Reservoirs, 2022, 34(5): 38-49.
[13] ZHANG Yan, HOU Lianhua, CUI Jingwei, LUO Xia, LIN Senhu, ZHANG Ziyun. Evolution characteristics of thermal expansion coefficient of rocks with temperature of Triassic Chang 7 organic-rich reservoir and its implications in Ordos Basin [J]. Lithologic Reservoirs, 2022, 34(4): 32-41.
[14] YIN Yuyi, YAO Zhichun, GUO Xiaobo, WANG Leli, CHEN Siqian, YU Xiaolei, CEN Xiangyang. Characteristics of Permian concealed structures in western margin of Ordos Basin and its significance for oil and gas exploration [J]. Lithologic Reservoirs, 2022, 34(4): 79-88.
[15] ZHANG Jigang, DU Meng, CHEN Chao, QIN Ming, JIA Ninghong, LYU Weifeng, DING Zhenhua, XIANG Yong. Quantitative characterization of pore structure of shale reservoirs of Permian Lucaogou Formation in Jimsar Sag [J]. Lithologic Reservoirs, 2022, 34(4): 89-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Qiulian, LI Aiqin, SUN Yanni, CUI Panfeng. Classification method for extra-low permeability reservoirs[J]. Lithologic Reservoirs, 2007, 19(4): 51 -56 .
[2] YANG Zhanlong,ZHANG Zhenggang,CHEN Qilin,GUO Jingyi,SHA Xuemei,LIU Wensu. Using multi-parameters analysis of seismic information to evaluate lithologic traps in continental basins[J]. Lithologic Reservoirs, 2007, 19(4): 57 -63 .
[3] FANG Chaohe, WANG Yifeng, ZHENG Dewen, GE Zhixin. Maceral and petrology of Lower Tertiary source rock in Qintong Sag, Subei Basin[J]. Lithologic Reservoirs, 2007, 19(4): 87 -90 .
[4] HAN Chunyuan,ZHAO Xianzheng,JIN Fengming,WANG Quan,LI Xianping,WANG Suqing. “Multi-factor controlling, four-factor entrapping and key-factor enrichment”of stratigraphic-lithologic reservoirs and exploration practice in Erlian Basin (Ⅳ)———Exploration practice[J]. Lithologic Reservoirs, 2008, 20(1): 15 -20 .
[5] YAN Shibang, HUWangshui, LI Ruisheng, GUAN Jian, LI Tao, NIE Xiaohong. Structural features of contemporaneous thrust faults in Hongche fault belt of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(1): 64 -68 .
[6] ZHANG Xia. Cultivation of explorer’s comprehensive quality(Ⅱ)———Scientific way of thinking[J]. Lithologic Reservoirs, 2008, 20(1): 129 -133 .
[7] ZHENG Rongcai, WANG Changyong, Li Hong, LEI Guangming, XIE Chunhong. Provenance analysis of Chang 6 oil-bearing formation of Baibao-Huachi region in Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(1): 32 -38 .
[8] LIU Weifang, DUAN Yonghua, GAO Jianhu, ZHANG Ximei, SUN Qinhua. A method study of carbonate reservoir ident ification by using post-stack seismic data[J]. Lithologic Reservoirs, 2007, 19(1): 101 -104 .
[9] LIU Xiaoyan,XIE Jibin,LIAOJianbo,ZHANG Jiabin. Strategy and water flood condition research on Jurassic reservoir of ZJ2 well-area, Jing 'an Oilf ield[J]. Lithologic Reservoirs, 2007, 19(1): 124 -129 .
[10] ZHENG Rongcai,GENG Wei,ZHOU Gang,HAN Yonglin,WANG Haihong,WEN Huaguo. Diagenesis and diagenetic facies of Chang 6 sandstone of Yanchang Formation in Baibao area, Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(2): 1 -8 .
TRENDMD: