Lithologic Reservoirs ›› 2025, Vol. 37 ›› Issue (5): 12-21.doi: 10.12108/yxyqc.20250502

• NEW ENERGY AND ASSOCIATED RESOURCES • Previous Articles    

Thermal-hydraulic-mechanical coupling model for development of CO2-EGS hot dry rock horizontal wells under multi-cluster fracturing condition

YANG Yonghong1, ZHANG Shiming1, CUI Yingbin1, YANG Wanqin1, YI Hongxia1, LIU Wei1, ZHANG Lisong2   

  1. 1. Exploration and Development Research Institute, Shengli Oilfield Company, Sinopec, Dongying 257015, Shandong, China;
    2. College of Pipeline and Civil Engineering, China University of Petroleum(East China), Qingdao 266580, Shandong, China
  • Received:2025-04-11 Revised:2025-05-16 Published:2025-09-06

Abstract: Through the incorporation of bedrock governing equations,fracture governing equations,and thermal-hydraulic-mechanical(THM)coupling relationships,and aidded by COMSOL software,numerical simulation research on the development of CO2-EGS hot dry rock reservoirs via horizontal wells under multicluster fracturing conditions was conducted. The results show that:(1)The established mathematical model reconstructed THM coupling relationships,modified the functional relationships between fracture porosity/permeability and stress,and improved the variations of CO2 density,viscosity,and specific heat capacity with pressure and temperature.(2)Considering the thermal compensation effects of bedrock,cap rock,and surrounding rock,a multi-source thermal compensation numerical simulation method was proposed,and a numerical model for CO 2-EGS hot dry rock reservoir development via horizontal wells under multi-cluster fracturing conditions was established.(3)Using the numerical model,the evolutions of the temperature field,seepage field,and stress field of hot dry rock were discussed,revealing that the horizontal well patterns,the configuration of multicluster fracture networks,and the properties of supercritical CO2 directly influence the evolution process of CO2- EGS.(4)The controlling factors for CO2-EGS hot dry rock reservoir development via horizontal wells were identified as the THM coupling mechanism,horizontal well pattern parameters,and multi-cluster fracture network parameters. Compared with TH coupling,THM coupling increases the produced fluid mass flow rate by 5.76%, shortens the heat extraction period by 3.3 years. The reasonable horizontal well pattern parameters are one injection well and two production wells,with a horizontal well length of 1 250 m,and a well spacing of 300 m. While the optimal fracture network parameters are a fracture spacing of 75 m,fracture width of 3 mm,and fracture height of 40 m.

Key words: hot dry rock, CO2-EGS, THM coupling, horizontal well, numerical model, multi-cluster fractures, maximum heat recovery

CLC Number: 

  • TE357.7
[1] 屈卫华,田野,董常春,等. 松辽盆地德惠断陷白垩系烃源岩特征及其控藏作用[J]. 岩性油气藏,2024,36(6):122-134. QU Weihua,TIAN Ye,DONG Changchun,et al. Characteristics of Cretaceous source rocks and their controlling effect on hydrocarbon accumulation in Dehui Fault Depression,Songliao Basin[J]. Lithologic Reservoirs,2024,36(6):122-134.
[2] 刘世奇,皇凡生,杜瑞斌,等. CO2地质封存与利用示范工程进展及典型案例分析[J]. 煤田地质与勘探,2023,51(2):158-174. LIU Shiqi,HUANG Fansheng,DU Ruibin,et al. Progress and typical case analysis of demonstration projects of the geological sequestration and utilization of CO2[J]. Coal Geology & Exploration,2023,51(2):158-174.
[3] 桑树勋,袁亮,刘世奇,等. 碳中和地质技术及其煤炭低碳化应用前瞻[J]. 煤炭学报,2022,47(4):1430-1451. SANG Shuxun,YUAN Liang,LIU Shiqi,et al. Geological technology for carbon neutrality and its application prospect for low carbon coal exploitation and utilization[J]. Journal of China Coal Society,2022,47(4):1430-1451.
[4] GENTZIS T. Subsurface sequestration of carbon dioxide:An overview from an Alberta(Canada)perspective[J]. International Journal of Coal Geology,2000,43(1/4):287-305.
[5] 王社教,施亦做,方朝合,等. 中国油田地热开发利用现状与发展方向[J]. 岩性油气藏,2024,36(2):23-32. WANG Shejiao,SHI Yizuo,FANG Chaohe,et al. Status and development trends of geothermal development and utilization in oilfields of China[J]. Lithologic Reservoirs,2024,36(2):23-32.
[6] 崔传智,李静,吴忠维. 扩散吸附作用下CO2非混相驱微观渗流特征模拟[J]. 岩性油气藏,2024,36(6):181-188. CUI Chuanzhi,LI Jing,WU Zhongwei. Simulation of microscopic seepage characteristics of CO2 immiscible flooding under the effect of diffusion and adsorption[J]. Lithologic Reservoirs,2024,36(6):181-188.
[7] 杨兆臣,卢迎波,杨果,等. 中深层稠油水平井前置CO2蓄能压裂技术[J]. 岩性油气藏,2024,36(1):178-184. YANG Zhaochen,LU Yingbo,YANG Guo,et al. Pre-CO2 energy storage fracturing technology in horizontal wells for medium-deep heavy oil[J]. Lithologic Reservoirs,2024,36(1):178-184.
[8] 卜宪标,郭志鹏,李华山,等. CO2单井增强地热系统取热性能研究[J]. 新能源进展,2022,10(6):509-518. BU Xianbiao,GUO Zhipeng,LI Huashan,et al. Heat extraction performance of CO2 single-well enhanced geothermal system[J]. Advances in New and Renewable Energy,2022,10(6):509-518.
[9] 郭平,许清华,孙振,等. 天然气藏CO2驱及地质埋存技术研究进展[J]. 岩性油气藏,2016,28(3):6-11. GUO Ping,XU Qinghua,SUN Zhen,et al. Research progress of CO 2 flooding and geological storage in gas reservoirs[J]. Lithologic Reservoirs,2016,28(3):6-11.
[10] LIU Shuyang,SUN Baojiang,XU Jianchun,et al. Study on competitive adsorption and displacing properties of CO2 enhanced shale gas recovery:Advances and challenges[J]. Geofluids, 2020,15:6657995.
[11] 张烈辉,曹成,文绍牧,等. 碳达峰碳中和背景下发展CO2- EGR的思考[J]. 天然气工业,2023,43(1):13-22. ZHANG Liehui,CAO Cheng,WEN Shaomu,et al. Thoughts on the development of CO2-EGR under the background of carbon peak and carbon neutrality[J]. Natural Gas Industry,2023, 43(1):13-22.
[12] PRUESS K. Enhanced geothermal systems(EGS):Comparing water with CO 2 as heat transmission fluids[R]. Dallas,Geothermal Energy Utilization Conference,2008.
[13] RANDOLPH J B,SAAR M O. Coupling carbon dioxide sequestration with geothermal energy capture in naturally permeable,porous geologic formations:Implications for CO2 sequestration[J]. Energy Procedia,2011,4:2206-2213.
[14] GHASSEMI A,ZHOU X. A three-dimensional thermo-poroelastic model for fracture response to injection/extraction in enhanced geothermal systems[J]. Geothermics,2011,40(1):39-49.
[15] KOH J,ROSHAN H,RAHMAN S S. A numerical study on the long term thermo-poroelastic effects of cold water injection into naturally fractured geothermal reservoirs[J]. Computers and Geotechnics,2011,38:669-682.
[16] JING Yani,JING Zhenzi,RICHARDS W J,et al. A simple 3-D thermoelastic model for assessment of the long-term performance of the Hijiori deep geothermal reservoir[J]. Journal of Volcanology and Geothermal Research,2014,269:14-22.
[17] 曹文炅,黄文博,蒋方明. 地下热流固耦合对EGS热开采的影响[J]. 新能源进展,2015,3(6):444-451. CAO Wenjiong,HUANG Wenbo,JIANG Fangming. The thermalhydraulic-mechanical coupling effects on heat extraction of enhanced geothermal systems[J]. Advances in New and Renewable Energy,2015,3(6):444-451.
[18] HICKS T W,PINE R J,RICHARDS W J,et al. A hydrothermos-mechanical numerical model for HDR geothermal reservoir evaluation[J]. International Journal of Rock Mechanics & Mining Sciences,1996,33(5):499-511.
[19] TARON J,ELSWORTH D. Thermal-hydrologic-mechanicalchemical processes in the evolution of engineered geothermal reservoirs[J]. International Journal of Rock Mechanics & Mining Sciences,2009,46(5):855-864.
[20] TARON J,ELSWORTH D,MIN K B. Numerical simulation of thermal-hydrologic-mechanical-chemical processes in deformable,fractured porous media[J]. International Journal of Rock Mechanics & Mining Sciences,2009,46(5):842-854.
[21] MCDERMOTT C I,RANDRIAMANJATOSOAA R L,TENZER H,et al. Simulation of heat extraction from crystalline rocks:The influence of coupled processes on differential reservoir cooling[J]. Geothermics,2006,35(3):321-344.
[22] SUN Yuexue,ZHANG Xiao,LI Xianghui,et al. Study on the intrinsic mechanisms underlying enhanced geothermal system (EGS)heat transfer performance differences in multi-wells[J]. Energy Conversion and Management,2023,292:117361.
[23] 李静岩,刘中良,周宇,等. CO2羽流地热系统热开采过程热流固耦合模型及数值模拟研究[J]. 化工学报,2019,70(1):72-82. LI Jingyan,LIU Zhongliang,ZHOU Yu,et al. Study of thermalhydrologic-mechanical numerical simulation model on CO2 plume geothermal system[J]. CIESC Journal,2019,70(1):72-82.
[24] 李培超,孔祥言,卢德唐. 饱和多孔介质流固耦合渗流的数学模型[J]. 水动力学研究与进展,2003,18(4):419-426. LI Peichao,KONG Xiangyan,LU Detang. Mathematical modeling of flow in saturated porous media on account of fluidstructure coupling effect[J]. Journal of Hydrodynamics,2003, 18(4):419-426.
[25] 戴永浩,陈卫忠,伍国军,等. 非饱和岩体弹塑性损伤模型研究与应用[J]. 岩石力学与工程学报,2008,27(4):728-735. DAI Yonghao,CHEN Weizhong,WU Guojun,et al. Study on elastoplastic damage model of unsaturated rock mass and its application[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(4):728-735.
[26] 王辉. 孔隙型热储开采适宜区识别及采灌模式优化研究[D]. 青岛:山东大学,2023. WANG Hui. Research on identification of suitable exploitation area and optimization of exploitation and reinjection mode for porous medium reservoir[D]. Qingdao:Shandong University, 2023.
[27] LI Jiawei,LI Zi,YUAN Wanju,et al. Numerical investigation of liquid and supercritical CO2 flow behaviors through 3D selfaffine rough fractures[J]. Fuel,2019,251:669-682.
[28] CUI Guodong,ZHANG Liang,REN Bo,et al. Geothermal exploitation from depleted high temperature gas reservoirs via recycling supercritical CO2:Heat mining rate and salt precipitation effects[J]. Applied Energy,2016,183:837-852.
[1] NIE Renshi, ZHANG Yuqing, ZHOU Jie, YUAN Anyi, CAI Mingjin, ZHANG Tao, LU Cong, ZENG Fanhui. Oil-gas two-phase flow well testing model of horizontal well considering stress sensitivity and changing wellbore storage effects [J]. Lithologic Reservoirs, 2025, 37(4): 184-191.
[2] YAN Jianping, LAI Siyu, GUO Wei, SHI Xuewen, LIAO Maojie, TANG Hongming, HU Qinhong, HUANG Yi. Research progress on casing deformation types and influencing factors in geological engineering of shale gas wells [J]. Lithologic Reservoirs, 2024, 36(5): 1-14.
[3] SU Hao, GUO Yandong, CAO Liying, YU Chen, CUI Shuyue, LU Ting, ZHANG Yun, LI Junchao. Natural depletion characteristics and pressure maintenance strategies of faultcontrolled fracture-cavity condensate gas reservoirs in Shunbei Oilfield [J]. Lithologic Reservoirs, 2024, 36(5): 178-188.
[4] TANG Shukai, GUO Tiankui, WANG Haiyang, CHEN Ming. Numerical simulation of fracture propagation law of in-fracture temporary plugging and diverting fracturing in tight reservoirs [J]. Lithologic Reservoirs, 2024, 36(4): 169-177.
[5] ZHOU Hao, LIANG Lixia. Calculation method of investigation radius of horizontal wells [J]. Lithologic Reservoirs, 2024, 36(1): 157-168.
[6] YANG Zhaochen, LU Yingbo, YANG Guo, HUANG Chun, YI Dalin, JIA Song, WU Yongbin, WANG Guiqing. Pre-CO2 energy storage fracturing technology in horizontal wells for medium-deep heavy oil [J]. Lithologic Reservoirs, 2024, 36(1): 178-184.
[7] CAI Hui, QU Dan, CHEN Minfeng. Reserve producing law of combined well pattern and technology strategy of horizontal well infilling: A case study from HD oilfield in Bohai Sea [J]. Lithologic Reservoirs, 2021, 33(4): 147-155.
[8] ZHANG Yunlai, CHEN Jianbo, ZHOU Haiyan, ZHANG Jilei, ZHANG Wei. Quantitative characterization of sweep coefficient of water drive in horizontal well for offshore bottom water reservoir [J]. Lithologic Reservoirs, 2020, 32(6): 146-153.
[9] JIANG Ruizhong, ZHANG Chunguang, GAO Yihua, GENG Yanhong, YU Hui, LI Haoyuan. Fractal nonlinear seepage model of horizontal wells in fractured-vuggy carbonate reservoirs [J]. Lithologic Reservoirs, 2019, 31(6): 118-126.
[10] AN Jie, TANG Meirong, CAO Zongxiong, WANG Wenxiong, CHEN Wenbin, WU Shunlin. Transformation of development model of horizontal wells in ultra-low permeability and low-pressure reservoirs [J]. Lithologic Reservoirs, 2019, 31(5): 134-140.
[11] XU Youjie, LIU Qiguo, WANG Rui, LIU Yicheng. Pressure transient of fractured horizontal well with complex fracture distribution in composite reservoir [J]. Lithologic Reservoirs, 2019, 31(5): 161-168.
[12] WANG Bei, LIU Xiangjun, SIMA Liqiang, XU Wei, LI Qian, LIANG Han. Multi-scale discrete fracture modeling technology for carbonate reservoir of Longwangmiao Formation in Moxi area and its application [J]. Lithologic Reservoirs, 2019, 31(2): 124-133.
[13] HUANG Quanhua, LIN Xingyu, TONG Kai, LU Yun, FU Yunhui. Prediction of water breakthrough time for horizontal well in non-Darcy flow edge water gas reservoirs [J]. Lithologic Reservoirs, 2019, 31(1): 147-152.
[14] LI Chuanliang, ZHU Suyang, CHAI Gaijian, DONG Fengling. Comparison of productivity of vertical wells with horizontal wells [J]. Lithologic Reservoirs, 2018, 30(N): 12-16.
[15] LI Jiqing, LIU Yuewu, HUANG Can, GAO Dapeng. Multi-stage fracturing horizontal well interference test model and its application [J]. Lithologic Reservoirs, 2018, 30(6): 138-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
TRENDMD: