Lithologic Reservoirs ›› 2026, Vol. 38 ›› Issue (1): 115-125.doi: 10.12108/yxyqc.20260110

• PETROLEUM EXPLORATION • Previous Articles    

Reverse-time migration in TI media based on optical flow vector

FENG Yancang1(), LIU Wenqing1, ZHANG Huixing2, WU Jie1, LI Dongsheng1   

  1. 1 PetroChina Research Institute of Petroleum Exploration and Development-NorthwestLanzhou 730020, China
    2 Ocean University of ChinaQingdao 266100, Shandong, China
  • Received:2025-04-07 Revised:2025-07-01 Online:2026-01-01 Published:2026-01-23

Abstract:

When dealing with complex geological structures, the cross-correlation of back-propagated reflected waves with normally propagating wavefield in elastic reverse-time migration (RTM) generates strong-amplitude low-frequency noise. To address the issues of computational instability and insufficient accuracy of conventional Poynting vector-based traveling wave separation RTM algorithm, TI (transversely isotropic) media RTM method based on optical flow vector was proposed. By integrating optical flow theory with anisotropic elastic wave dynamics, through iterative computations, the proposed mothod obtains a more accurate vector that closely approximates the true wavefield propagation direction, effectively suppressing migration noise. The results show that:(1) The optical flow vector derived from the constant-wavefield assumption over adjacent time steps and the spatial smoothness assumption of wavefields in TI media eliminates the instability inherent in Poynting vectors, and accurately indicates the P-wave and S-wave propagation direction in TI media. (2) The traveling wave separation method based on optical flow vector can accurately decompose wavefields into up-, down-, left-, and right-traveling wave. (3) The optical flow vector-based TI media RTM algorithm effectively avoids cross-correlation imaging of wavefields along identical paths, and can suppress migration noise.

Key words: TI media, low-frequency noise, Poynting vector, optical flow vector, elastic wave, traveling wave separation, reverse-time migration, imaging

CLC Number: 

  • TE121.34

Fig. 1

Wavefield snapshots of homogeneous VTI medium"

Fig. 2

Wavefield snapshots of homogeneous TTI medium"

Fig. 3

Decoupling results for P-wave and S-wave in homogeneous VTI medium"

Fig. 4

Decoupling results for P-wave and S-wave in homogeneous TTI medium"

Fig. 5

Optical flow vectors of 100 ms wavefield in homogeneous VTI medium"

Fig. 6

Optical flow vectors of 100 ms wavefield in homogeneous TTI medium"

Fig. 7

Poynting vectors of 100 ms wavefield in homogeneous VTI medium"

Fig. 8

Poynting vector of 100 ms wavefield in homogeneous TTI medium"

Fig. 9

Double-layer velocity model"

Fig. 10

Poynting vector of 240 ms wavefield in double-layer VTI media"

Fig. 11

Optical flow vectors of 240 ms wavefield in double-layer VTI media"

Fig. 12

240 ms wavefield snapshot of double-layer VTI model"

Fig. 13

Traveling wave separation results based on optical flow method in double-layer VTI media"

Fig. 14

Traveling wave separation results based on Poynting vector method in double-layer VTI media"

Fig. 15

RTM results of double-layer model"

Fig. 16

Wavenumber spectra of the double-layer model"

Table 1

Computation time comparison of a single source RTM"

成像条件 时间/s
常规成像条件 35.03
Poynting矢量行波分离 40.81
光流矢量(1次迭代)行波分离 44.82
光流矢量(10次迭代)行波分离 60.62

Fig. 17

Anisotropic parameters of BP model"

Fig. 18

Wavefield snapshots at 0.8 s in BP model"

Fig. 19

Decoupled results for P-wave and S-wave of BP model"

Fig. 20

Quasi-P-wave separation results for source wavefield of BP model"

Fig. 21

Quasi-S-wave separation results for source wavefield of BP model"

Fig. 22

RTM results of BP model"

[1] 陈可洋. 基于拉普拉斯算子的叠前逆时噪声压制方法[J]. 岩性油气藏, 2011, 23(5):87-95.
CHEN Keyang. Pre-stack reverse-time noise suppressing method based on Laplacian operator[J]. Lithologic Reservoirs, 2011, 23(5):87-95.
doi: 10.3969/j.issn.1673-8926.2011.05.018
[2] 刘梦丽, 徐兴荣, 王小卫, 等. 预条件弹性介质最小二乘逆时偏移[J]. 岩性油气藏, 2020, 32(5):133-142.
doi: 10.12108/yxyqc.20200514
LIU Mengli, XU Xingrong, WANG Xiaowei, et al. Preconditioning elastic least-squares reverse time migration[J]. Lithologic Reservoirs, 2020, 32(5):133-142.
doi: 10.12108/yxyqc.20200514
[3] 芦永明, 张剑锋, 杨凯, 等. 二维TI介质非结构网格弹性波矢量逆时偏移[J]. 地球物理学报, 2017, 60(12):4776-4789.
doi: 10.6038/cjg20171219
LU Yongming, ZHANG Jianfeng, YANG Kai, et al. Vector elastic reverse time migration based on unstructured mesh for 2D tilted TI medium[J]. Chinese Journal of Geophysics, 2017, 60(12):4776-4789.
[4] 周进举, 王德利, 李博文, 等. 基于解耦传播的波场分解方法在VTI介质弹性波逆时偏移中的应用[J]. 吉林大学学报(地球科学版), 2018, 48(3):909-921.
ZHOU Jinju, WANG Deli, LI Bowen, et al. Application of wave-field decomposition based on decoupled propagation in elastic RTM for VTI media[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(3):909-921.
[5] 陈沫. 横向各向同性介质地震波场逆时偏移[J]. 岩性油气藏, 2009, 21(4):78-81.
CHEN Mo. The seismic wave field reverse-time migration in transversely isotropic media[J]. Lithologic Reservoirs, 2009, 21(4):78-81.
doi: 10.3969/j.issn.1673-8926.2009.04.015
[6] 杜启振, 秦童. 横向各向同性介质弹性波多分量叠前逆时偏移[J]. 地球物理学报, 2009, 52(3):801-807.
DU Qizhen, QIN Tong. Multicomponent prestack reverse-time migration of elastic waves in transverse isotropic medium[J]. Chinese Journal of Geophysics, 2009, 52(3):801-807.
[7] ZHOU Yang, WANG Huazhong. Efficient wave-mode separation in vertical transversely isotropic media[J]. Geophysics, 2016, 81(2):C35-C47.
[8] YANG Kai, ZHANG Jianfeng. Determination of the phase-velocity directions in anisotropic media using a direction vector[J]. Geophysics, 2022, 87(6):C125-C138.
[9] DU Qizhen, GUO Chenfeng, ZHAO Qiang, et al. Vector-based elastic reverse time migration based on scalar imaging condition[J]. Geophysics, 2017, 82(2):S111-S127.
doi: 10.1190/geo2016-0146.1
[10] XIAO Xiang, LEANEY W S. Local vertical seismic profiling (VSP) elastic reverse-time migration and migration resolution:Salt-flank imaging with transmitted P-to-S waves[J]. Geophy-sics, 2010, 75(2):S35-S49.
[11] LI Zhiyuan, LIU Youshan, LIANG Guanghe, et al. First-order particle velocity equations of decoupled P- and S-wavefields and their application in elastic reverse time migration[J]. Geophysics, 2021, 86(6):S387-S404.
doi: 10.1190/geo2020-0452.1
[12] TANG Chen, MCMECHAN G A, WANG Deli. Two algorithms to stabilize multidirectional Poynting vectors for calculating angle gathers from reverse time migration[J]. Geophysics, 2017, 82(2):S129-S141.
doi: 10.1190/geo2016-0101.1
[13] LI Zhiyuan, WANG Jiquan, MA Xiaona, et al. Calculation of the stable Poynting vector using the first-order temporal derivative of the seismic wavefield[J]. Geophysics, 2022, 87(1):S17-S25.
[14] BRUHN A, WEICKERT J, SCHNORR C. Lucas/Kanade meets Horn/Schunck:Combining local and global optic flow methods[J]. International Journal of Computer Vision, 2005, 61(3):211-231.
doi: 10.1023/B:VISI.0000045324.43199.43
[15] SZELISKI R. Computer vision:Algorithms and applications[M]. 2nd ed. New York: Springer, 2022.
[16] GONG Ting, NGUYEN B D, MCMECHAN G A. Polarized wavefield magnitudes with optical flow for elastic angle-demain common-image gathers[J]. Geophysics, 2016, 81(4):S239-S251.
doi: 10.1190/geo2015-0518.1
[17] 吴成梁, 王华忠, 冯波, 等. 基于CLG光学流和波场分解的逆时偏移角度道集提取方法研究[J]. 地球物理学报, 2021, 64(4):1375-1388.
doi: 10.6038/cjg2021O0088
WU Chengliang, WANG Huazhong, FENG Bo, et al. RTM angle gathers based on the Combining Local and Global (CLG) optical flow method and wavefield decomposition method[J]. Chinese Journal of Geophysics, 2021, 64(4):1375-1388.
[18] XIE Chuang, WANG Jianhua, SONG Peng, et al. Elastic reverse time migration based on first-order velocity-dilatation-rotation equations using the optical flow vector[J]. Geophysics, 2024, 89(4):S325-S337.
doi: 10.1190/geo2023-0198.1
[19] VIRIEUX J. P-SV wave propagation in heterogeneous media:Velocity-stress finite-difference method[J]. Geophysics, 1986, 51(4):889-901.
doi: 10.1190/1.1442147
[20] THOMSEN L. Weak elastic anisotropy[J]. Geophysics, 1986, 51(10):1954-1966.
doi: 10.1190/1.1442051
[21] SAENGER E H, BOHLEN T. Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid[J]. Geophysics, 2004, 69(2):583-591.
doi: 10.1190/1.1707078
[22] 杨哲, 刘威, 胡自多, 等. 时空域波动方程混合网格有限差分数值模拟[J]. 岩性油气藏, 2018, 30(2):93-109.
YANG Zhe, LIU Wei, HU Ziduo, et al. Mixed-grid finite-diffe-rence methods for wave equation numerical modeling in time-space domain[J]. Lithologic Reservoirs, 2018, 30(2):93-109.
[23] 陈可洋. 各向异性弹性介质方向行波波场分离正演数值模拟[J]. 岩性油气藏, 2014, 26(5):91-96.
CHEN Keyang. Wave field separating numerical simulation of anisotropic elastic medium directional one-way wave[J]. Lithologic Reservoirs, 2014, 26(5):91-96.
doi: 10.3969/j.issn.1673-8926.2014.05.017
[24] BERENGER J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics, 1994, 114(2):185-200.
doi: 10.1006/jcph.1994.1159
[25] MORSE P M, FESHBACH H. Methods of theoretical physics:I[M]. New York: McGraw-Hill Book Company, 1953.
[26] DELLINGER J, ETGEN J. Wave-field separation in two-dimensional anisotropic media[J]. Geophysics, 1990, 55(7):914-919.
doi: 10.1190/1.1442906
[27] HORN B K P, SCHUNCK B G. Determining optical flow[J]. Artificial Intelligence, 1981, 17:185-203.
doi: 10.1016/0004-3702(81)90024-2
[28] ZHANG Qie. RTM angle gathers and Specular Filter (SF) RTM using optical flow[R]. Houston: Society of Exploration Geophysicists, 2014.
[1] WANG Lide, WANG Xiaowei, ZHOU Hui, WU Jie, ZHANG Zhiqiang, WANG Jianle, WANG Deying, FENG Gang. A layered velocity modeling method for elastic wave full waveform inversion based on improved conjugate gradient method [J]. Lithologic Reservoirs, 2023, 35(4): 61-69.
[2] YAN Jianping, LUO Jingchao, SHI Xuewen, ZHONG Guanghai, ZHENG Majia, HUANG Yi, TANG Hongming, HU Qinhong. Fracture development models and significance of Ordovician WufengSilurian Longmaxi shale in Luzhou area,southern Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(6): 60-71.
[3] XU Xingrong, SU Qin, SUN Jiaqing, ZENG Huahui, XIAO Mingtu, LIU Mengli. High precision combined residual static correction method and its application [J]. Lithologic Reservoirs, 2021, 33(5): 132-139.
[4] WU Wei, SHAO Guanghui, GUI Pengfei, ZHANG Qian, WEI Haoyuan, LI Guoli, REN Panliang. Fracture effectiveness evaluation and reservoir quality classification based on electrical imaging data: a case study of Cretaceous in Yaerxia Oilfield [J]. Lithologic Reservoirs, 2019, 31(6): 102-108.
[5] LIU Dongdong, YANG Dongxu, ZHANG Ziya, ZHANG Chen, LUO Qun, PAN Zhankun, HUANG Zhixin. Fracture identification for tight reservoirs by conventional and imaging logging: a case study of Permian Lucaogou Formation in Jimsar Sag,Junggar Basin [J]. Lithologic Reservoirs, 2019, 31(3): 76-85.
[6] HAN Linghe, HU Ziduo, FENG Huiyuan, LIU Wei, YANG Zhe, WANG Yanxiang. Grid tomography based on well-to-seismic integration in anisotropic velocity modeling and its application [J]. Lithologic Reservoirs, 2018, 30(4): 91-97.
[7] ZHAO Bozhi, LIN Changsong, LI Hao, WANG Yuan, SUN Yanda, HE Haiquan, WANG Qinglong. Description and distribution characteristics of Lower Carboniferous karst reservoir of Asa block in Marsel area,southern Kazakhstan [J]. Lithologic Reservoirs, 2018, 30(1): 97-111.
[8] CHEN Keyang. Application of reverse-time migration technology to complex structural imaging in Daqing exploration area [J]. Lithologic Reservoirs, 2017, 29(6): 91-100.
[9] TANG Haiquan. Image processing method of LWD azimuthal gamma data [J]. Lithologic Reservoirs, 2017, 29(1): 110-115.
[10] Zhou Wen, Yin Taiju, Zhang Yachun, Li Weiqiang, Wang Dongdong. Application of ant tracking technology to fracture prediction:A case study from Xiagou Formation in Qingxi Oilfield [J]. LITHOLOGIC RESERVOIRS, 2015, 27(6): 111-118.
[11] ZHANG Daquan,ZOU Niuniu,JIANG Yang,MA Chongyao,ZHANG Shuncun,DU Shekuan. Logging identification method of volcanic rock lithology: A case study from volcanic rock in Junggar Basin [J]. Lithologic Reservoirs, 2015, 27(1): 108-114.
[12] CHEN Keyang. Wave field separating numerical simulation of anisotropic elastic medium directional one-way wave [J]. Lithologic Reservoirs, 2014, 26(5): 91-96.
[13] CHEN Keyang, CHEN Shumin, L I Lailin, WU Qingling, FAN Xingcai, LIU Zhenkuan. Directional one-way wave field separating numerical simulation of the seismic wave equation and reverse-time migration [J]. Lithologic Reservoirs, 2014, 26(4): 130-136.
[14] CHEN Keyang, WU Qingling, FAN Xingcai, CHEN Shumin, LI Lailin, LIU Zhenkuan. Seismic wave reverse-time migration noise analysis within different common imaging point gathers [J]. Lithologic Reservoirs, 2014, 26(2): 118-124.
[15] CHEN Keyang. Reverse-time migration analysis of several seismic observation models [J]. Lithologic Reservoirs, 2013, 25(1): 95-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
TRENDMD: