Lithologic Reservoirs ›› 2018, Vol. 30 ›› Issue (1): 97-111.doi: 10.3969/j.issn.1673-8926.2018.01.010

Previous Articles     Next Articles

Description and distribution characteristics of Lower Carboniferous karst reservoir of Asa block in Marsel area,southern Kazakhstan

ZHAO Bozhi1, LIN Changsong1,2, LI Hao2, WANG Yuan1, SUN Yanda3, HE Haiquan3, WANG Qinglong3   

  1. 1. School of Energy Resources, China University of Geosciences, Beijing 100083, China;
    2. School of Ocean Sciences, China University of Geosciences, Beijing 100083, China;
    3. Research Institute of Exploration and Development Technology, Geo-Jade Petroleum Corporation, Beijing 100016, China
  • Received:2017-08-19 Revised:2017-10-29 Online:2018-01-21 Published:2018-01-21

Abstract: The Asa block located in Marsel exploration area at the north and middle of Kazakhstan has a good condition for natural gas deposits,and the Lower Carboniferous carbonate rocks have a rich gas display,which becomes a new breakthrough in recent exploration phase. As found in the related study,the favorable reservoir development is closely related with karstification. The imaging logging data,combined with cores,conventional logging curves and logging cross plots,were used to divide karst structural units for typical single wells in the study area. The results show that except Tournaisian(C1t),Karst developed in all the other layers of the Lower Carboniferous in Asa block,especially developed in Visean(C1v3)and Serpukhovian(C1sr). A fine description of the main karst section was conducted by using imaging logging and the result shows that karst in C1sr and in C1v3 has obvious different characteristics. Moreover,there are two sets of karsts developed in C1sr,and they are below the gypsum rocks which can indicate arid environment. Through horizontal well-tie section contrast,C1v3 has the features of epigenic karst and obvious vertical distribution and it can be divided into the weathering crust palaeosol,vertical vadose karst zone and horizontal underflow karst zone from the top to the bottom. The vertical vadose karst zone is dominated by high angle dissolved enlarged fractures,while horizontal underflow karst zone is dominated by low angle dissolved enlarged fractures and unfilled caverns. This study result is helpful for guiding fine description of carbonate karst reservoirs and searching for favorable carbonate karst reservoirs.

Key words: scale formation, prediction, saturation index method, stability index method, Huabei Oilfield

CLC Number: 

  • TE122.2
[1] 白国平. 世界碳酸盐岩大油气田分布特征. 古地理学报, 2006,8(2):243. BAI G P. Distribution patterns of giant carbonate fields in the world. Journal of Palaeogeography,2006,8(2):243.
[2] 江怀友,宋新民,王元基,等.世界海相碳酸盐岩油气勘探开发现状与展望.海洋石油,2008,28(4):7. JIANG H Y,SONG X M,WANG Y J,et al. Current situation and forecast of the world's carbonate oil and gas exploration and development. Offshore Oil,2008,28(4):7.
[3] 张宝民,刘静江.中国岩溶储集层分类与特征及相关的理论问题.石油勘探与开发,2009,36(1):12-29. ZHANG B M,LIU J J. Classification and characteristics of karst reservoirs in China and related theories. Petroleum Exploration and Development,2009,36(1):12-29.
[4] 金强,程付启,田飞.岩溶型碳酸盐岩储层中缝洞复合体及其油气地质意义. 中国石油大学学报(自然科学版),2017,41(3):50. JIN Q,CHENG F Q,TIAN F. Identification of fracture-vug complex from karsted carbonates and its significance in petroleum geology. Journal of China University of Petroleum(Edition of Natural Science),2017,41(3):50.
[5] 赵文智,沈安江,潘文庆,等.碳酸盐岩岩溶储层类型研究及对勘探的指导意义——以塔里木盆地岩溶储层为例. 岩石学报,2013,29(9):3214. ZHAO W Z,SHEN A J,PAN W Q,et al. A research on carbonate karst reservoirsclassification and its implication on hydrocarbon exploration:cases studies from Tarim Basin. Acta Petrologica Sinica,2013,29(9):3214.
[6] 陈学时,易万霞,卢文忠.中国油气田古岩溶与油气储层.海相油气地质,2002,7(4):13-25. CHEN X S,YI W X,LU W Z. The paleokarst reservoirs in the oil and gas fields in China. Marine Origin Petroleum Geology, 2002,7(4):13-25.
[7] 代冬冬,房启飞,万效国,等.哈拉哈塘地区奥陶系岩溶古河道识别及其成藏意义.岩性油气藏,2017,29(5):89-96. DAI D D,FANG Q F,WAN X G,et al. Identification of Ordovician karstic paleochannels and its accumulation significance in Halahatang area. Lithologic Reservoirs,2017,29(5):89-96.
[8] 汪洋,李树同,牟炜卫,等. 乌审旗-志丹地区奥陶系岩溶古地貌与马五41气水分布关系. 岩性油气藏,2016,28(2):64-71. WANG Y,LI S T,MOU W W,et al. Effect ofkarst paleogeomorphology of Ordovician on gas-water distributionof Ma 541 in Wushenqi-Zhidan area. Lithologic Reservoirs,2016,28(2):64-71.
[9] 倪超,杨家静,陈薇,等. 致密灰岩储层特征及发育模式——以四川盆地川中地区大安寨段为例. 岩性油气藏,2015,27(6):38-47. NI C,YANG J J,CHEN W,et al. Reservoir characteristics and development model of dense limestone:a case study from Da'anzhai member in central Sichuan Basin. Lithologic Reservoirs, 2015,27(6):38-47.
[10] 王珺,杨长春,许大华,等.微电阻率扫描成像测井方法应用及发展前景.地球物理学进展,2005,20(2):358. WANG J,YANG C C,XU D H,et al. Application and prospect of the formation microresistivity image well logging. Progress in Geophysics,2005,20(2):358.
[11] 吴文圣,陈钢花,王中文,等.用地层微电阻率扫描成像测井识别沉积构造特征.测井技术,2000,24(1):60. WU W S,CHEN G H,WANG Z W,et al. Features recognition of sedimentary structure on formation microscanner log. Well Logging Technology,2000,24(1):60.
[12] 陈钢花,吴文圣,王中文,等. 利用地层微电阻率成像测井识别裂缝.测井技术,1999,23(4):279. CHEN G H,WU W S,WANG Z W,et al. Fracture identification by microresistivity scanner log. Well Logging Technology, 1999,23(4):279.
[13] 肖立志,张元中,吴文圣,等. 成像测井学基础.北京:石油工业出版社,2010:6. XIAO L Z,ZHANG Y Z,WU W S,et al. The imaging logging study basis. Beijing:Petroleum Industry Press,2010:6.
[14] 耿晓洁,林畅松,韩剑发,等.塔中北斜坡中下奥陶统鹰山组岩溶储层成像测井相精细研究. 天然气地球科学,2015,26(2):229-240.GENG X J,LIN C S,HAN J F,et al. FMI facies research in the karst reservoir of the middle-lower Ordovician Yingshan Formation in the northern slope of Tazhong area. Natural Gas Geoscience, 2015,26(2):229-240.
[15] 王晔磊,邱隆伟,师政,等. 基于FM I测井相的岩溶发育模式——以渤海湾盆地黄骅坳陷南堡凹陷古生界为例.新疆石油地质,2016,37(3):301-306. WANG Y L,QIU L W,SHI Z,et al. Study on karst development pattern based on FMI logging facies:a case study of Paleozoic strata in Nanpu Sag of Huanghua Depression,Bohai Bay Basin. Xinjiang Petroleum Geology,2016,37(3):301-306.
[16] 于靖波,李忠,杨柳,等.塔中北斜坡鹰山组深埋岩溶型储层刻画及分布规律.石油学报,2016,37(3):299-310. YU J B,LI Z,YANG L,et al. Characterization and distribution of deeply-buried paleokarst carbonate reservoirs of Ordovician Yingshan Formation in northern slope of central Tarim Basin. Acta Petrolei Sinica,2016,37(3):299-310.
[17] 杨柳,李忠,吕修祥,等. 塔中地区鹰山组岩溶储层表征与古地貌识别——基于电成像测井的解析. 石油学报,2014,35(2):265-275. YANG L,LI Z,LYU X X,et al. Paleotopographic characterization and reconstruction of karst reservoirs in Yingshan Formation,Tazhong area,Tarim Basin:a research based on borehole imageloginterpretation.ActaPetroleiSinica,2014,35(2):265-275.
[18] 庞雄奇,黄捍东,林畅松,等.哈萨克斯坦Marsel探区叠复连续气田形成、分布与探测及资源储量评价.石油学报,2014, 35(6):1013. PANG X Q,HUANG H D,LIN C S,et al. Formation,distribution,exploration,and resource/reserve assessment of superimposed continuous gas field in Marsel exploration area,Kazakhstan. Acta Petrolei Sinica,2014,35(6):1013.
[19] 谢方克,殷进垠. 哈萨克斯坦共和国油气地质资源分析.地质与资源,2004,13(1):63. XIE F K,YIN J Y. The study of hydrocarbon resources in the Republic of Kazakhstan. Geology and Resources,2004,13(1):63.
[20] 万维,傅恒,黄海平,等.哈萨克斯坦楚-萨雷苏盆地热兹卡兹甘地区构造运动与沉积演化. 沉积与特提斯地质,2007,27(4):60. WAN W,FU H,HUANG H P,et al. Tectonic movement and sedimentary evolution in the Zhezkazgan region,Chu-Saleisu Basin,Kazakstan. Sedimentary Geology and Tethyan Geology, 2007,27(4):60.
[21] 郑俊章,周海燕,黄先雄.哈萨克斯坦地区石油地质基本特征及勘探潜力分析.中国石油勘探,2009,14(2):84. ZHENG J Z,ZHOU H Y,HUANG X X. Basic characteristics of petroleum geology and exploration potential analysis in Kazakhstan. China Petroleum Exploration,2009,14(2):84.
[22] 李虹.楚-萨雷苏盆地南哈区块早石炭世沉积层序、沉积演化及有利储集相带分布预测分析.北京:中国地质大学(北京), 2014:24,58. LI H. Sequence,sedimentary evolution and favorable reservoir prediction of the early carboniferous in Chu-Sarysu Basin,Southern Kazakhstan. Beijing:China University of Geosciences (Beijing),2014:24,58.
[23] 马晖. 利用测井方法识别和评价塔河油田岩溶溶洞.断块油气田,2012,19(2):266-269. MA H. Identification and evaluation of karst caves with well logging method in Tahe Oilfield. Fault-Block Oil & Gas Field, 2012,19(2):266-269.
[24] 赵军,肖承文,虞兵,等.轮古地区碳酸盐岩洞穴型储层充填程度的测井评价.石油学报,2011,32(4):605-610. ZHAO J,XIAO C W,YU B,et al. Logging evaluation on filling degree of cavernous carbonate reservoirs in the Lunge region. Acta Petrolei Sinica,2011,32(4):605-610.
[25] 赵军,李宗杰,虞兵,等.碳酸盐岩洞穴充填物及其充填程度的测井判别方法.中国岩溶,2013,32(2):225-230. ZHAO J,LI Z J,YU B,et al. The logging recognition for the infill and the filling degree in karst cave. Carsologica Sinica, 2013,32(2):225-230.
[26] 肖玉茹,何峰煜,孙义梅.古洞穴型碳酸盐岩储层特征研究——以塔河油田奥陶系古洞穴为例. 石油与天然气地质,2003,24(1):75. XIAO Y R,HE F Y,SUN Y M. Reservoir characteristics of paleocave carbonates-a case study of Ordovician paleocave in Tahe oilfield,Tarim Basin. Oil & Gas Geology,2003,24(1):75.
[27] 徐微,贾振远,蔡忠贤. 碳酸盐岩古风化壳储层溶洞特征研究——以塔河油田奥陶系油藏为例. 石油天然气学报,2005, 27(1):156. XU W,JIA Z Y,CAI Z X. The study on the characteristic of vug reservoir in carbonate. Journal of Oil and Gas Technalogy, 2005,27(1):156.
[28] 程飞. 缝洞型碳酸盐岩油藏储层类型动静态识别方法——以塔里木盆地奥陶系为例. 岩性油气藏,2017,29(3):80. CHENG F. Integrated dynamic and static identification method of fracturedvuggy carbonatereservoirs:a case from the Ordovician in Tarim Basin. Lithologic Reservoirs,2017,29(3):80.
[29] 黄华. FMI成像测井技术在塔中碳酸盐岩中的应用.资源环境与工程,2008,22(1):92-95. HUANG H. Application of FMI well logging technology in carbonate reservoir of Tazhong oilfield. Resources Environment & Engineering,2008,22(1):92-95.
[1] LI Daoqing, CHEN Yongbo, YANG Dong, LI Xiao, SU Hang, ZHOU Junfeng, QIU Tingcong, SHI Xiaoqian. Intelligent comprehensive prediction technology of coalbed methane “sweet spot”reservoir of Jurassic Xishanyao Formation in Baijiahai uplift,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(6): 23-35.
[2] ZHOU Ziqiang, ZHU Zhengping, PAN Renfang, DONG Yu, JIN Jineng. Simulation and prediction of tight sandstone reservoirs based on waveform facies-controlled inversion:A case study from the second member of Paleogene Kongdian Formation in southern Cangdong sag, Huanghua Depression [J]. Lithologic Reservoirs, 2024, 36(5): 77-86.
[3] CHEN Kang, DAI Juncheng, WEI Wei, LIU Weifang, YAN Yuanyuan, XI Cheng, LYU Yan, YANG Guangguang. Lithofacies classification of tight sandstone based on Bayesian Facies-AVO attributes:A case study of the first member of Jurassic Shaximiao Formation in central Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 111-121.
[4] WANG Zixin, LIU Guangdi, YUAN Guangjie, YANG Henglin, FU Li, WANG Yuan, CHEN Gang, ZHANG Heng. Characteristics and reservoir control of source rocks of Triassic Chang 7 member in Qingcheng area,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(5): 133-144.
[5] HE Wenyuan, CHEN Keyang. Prediction method for lithologic reservoirs in Doshan slope zone of South Turgai Basin,Kazakhstan [J]. Lithologic Reservoirs, 2024, 36(4): 1-11.
[6] SHEN Youyi, WANG Kaifeng, TANG Shuheng, ZHANG Songhang, XI Zhaodong, YANG Xiaodong. Geological modeling and“sweet spot”prediction of Permian coal measures shale reservoirs in Yushe-Wuxiang block,Qinshui Basin [J]. Lithologic Reservoirs, 2024, 36(4): 98-108.
[7] XIONG Bo, ZHU Dongxue, FANG Chaohe, WANG Shejiao, DU Guanglin, XUE Yafei, MO Shaoyuan, XIN Fudong. Heat transfer prediction of medium and deep coaxial casing based on BP algorithm [J]. Lithologic Reservoirs, 2024, 36(2): 15-22.
[8] GUI Jinyong, LI Shengjun, GAO Jianhu, LIU Bingyang, GUO Xin. A random forests prediction method for gas saturation based on feature variable extension [J]. Lithologic Reservoirs, 2024, 36(2): 65-75.
[9] LI Bisong, SU Jianlong, PU Yong, MIAO Zhiwei, ZHANG Wenjun, XIAO Wei, ZHANG Lei, JIANG Yu. Facies-controlled karst characterization and effective reservoir prediction of Permian Maokou Formation in Yuanba area,Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(1): 69-77.
[10] LIU Yaming, WANG Dandan, TIAN Zuoji, ZHANG Zhiwei, WANG Tongkui, WANG Chaofeng, YANG Xiaofa, ZHOU Yubing. Characteristics and prediction methods of igneous rocks in complex carbonate oilfields in Santos Basin,Brazil [J]. Lithologic Reservoirs, 2023, 35(6): 127-137.
[11] ZHANG Changmin, ZHANG Xianghui, ZHU Rui, FENG Wenjie, YIN Taiju, YIN Yanshu, Adrian J. HARTLEY. Research progress and application prospect of distributive fluvial system [J]. Lithologic Reservoirs, 2023, 35(5): 11-25.
[12] LI Shengjun, GAO Jianhu, ZHANG Fanchang, HE Dongyang, GUI Jinyong. A strong seismic energy reduction method under compressed sensing [J]. Lithologic Reservoirs, 2023, 35(4): 70-78.
[13] ZHANG Weiwei, LIU Jun, LIU Lihui, ZHANG Xiaozhao, BAI Haijun, YANG Dengfeng. Lithology prediction technology and its application of Paleogene Wenchang Formation in Panyu 4 depression,Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2022, 34(6): 118-125.
[14] QIU Chen, YAN Jianping, ZHONG Guanghai, LI Zhipeng, FAN Cunhui, ZHANG Yue, HU Qinhong, HUANG Yi. Sedimentary microfacies division and logging identification of Ordovician Wufeng-Silurian Longmaxi shale in Luzhou area,Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(3): 117-130.
[15] DONG Min, GUO Wei, ZHANG Linyan, WU Zhonghai, MA Licheng, DONG Hui, FENG Xingqiang, YANG Yuehui. Characteristics of paleotectonic stress field and fractures of WufengLongmaxi Formation in Luzhou area, southern Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(1): 43-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] DUAN Tianxiang,LIU Xiaomei,ZHANG Yajun,XIAO Shuqin. Discussion on geologic modeling with Petrel[J]. Lithologic Reservoirs, 2007, 19(2): 102 -107 .
[2] ZHANG Liqiu. Optimization of upward strata combination of second class oil layer in eastern south Ⅱ area of Daqing Oilfield[J]. Lithologic Reservoirs, 2007, 19(4): 116 -120 .
[3] ZHANG Di,HOU Zhongjian,WANG Yahui,WANG Ying,WANG Chunlian. Sedimentary characteristics of lacustrine carbonate rocks of the first member of Shahejie Formation in Banqiao-Beidagang area[J]. Lithologic Reservoirs, 2008, 20(4): 92 -97 .
[4] FAN Huaicai, LI Xiaoping, DOU Tiancai, WU Xinyuan. Study on stress sensitivity effect on flow dynamic features of gas wells[J]. Lithologic Reservoirs, 2010, 22(4): 130 -134 .
[5] TIAN Shufang,ZHANG Hongwen. Application of life cycle theory to predict increasing trend of proved oil reserves in Liaohe Oilfield[J]. Lithologic Reservoirs, 2010, 22(1): 98 -100 .
[6] YANG Kai,GUO Xiao. Numerical simulation study of three-dimensional two-phase black oil model in fractured low permeability reservoirs[J]. Lithologic Reservoirs, 2009, 21(3): 118 -121 .
[7] ZHAI Zhongxi, QINWeijun, GUO Jinrui. Quantitative relations between oil-gas filling degree and channel seepage flow capacity of the reservoir:Example of Shuanghe Oilfield in Biyang Depression[J]. Lithologic Reservoirs, 2009, 21(4): 92 -95 .
[8] QI Minghui,LU Zhengyuan,YUAN Shuai,LI Xinhua. The analysis on the sources of water body and characteristic of water breakthough at Block 12 in Tahe Oilfield[J]. Lithologic Reservoirs, 2009, 21(4): 115 -119 .
[9] LI Xiangbo,CHEN Qi,lin,LIU Huaqing,WAN Yanrong,MU Jingkui,LIAO Jianbo,WEI Lihua. Three types of sediment gravity flows and their petroliferous features of Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2010, 22(3): 16 -21 .
[10] LIU Yun,LU Yuan,YI Xiangyi, ZHANG Junliang, ZHANG Jinliang,WANG Zhenxi. Gas hydrate forecasting model and its influencing factors[J]. Lithologic Reservoirs, 2010, 22(3): 124 -127 .
TRENDMD: