Lithologic Reservoirs ›› 2012, Vol. 24 ›› Issue (1): 20-25.doi: 10.3969/j.issn.1673-8926.2012.01.004

Previous Articles     Next Articles

Origin of dolomite of Lower Ordovician Yingshan Formation in Tazhong area

WANG Zhenyu1, YANG Liuming1, MA Feng2, YANG Liuyan2, ZANG Shiqing1, LUO Xinsheng3   

  1. 1. College of Resource and Environment, Southwest Petroleum University, Chengdu 610500, China; 2. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China; 3. Research Institute of Exploration and Development, PetroChina Tarim Oilfield Company, Korla 841000, China
  • Online:2012-02-20 Published:2012-02-20

Abstract:

Yingshan Formation of Lower Ordovician in Tazhong area of Tarim Basin becomes an important object for marine carbonate rocks exploration, and it developed large amounts of qualified dolomite reservoirs. Due to the deep burial and low degree of exploration of dolomite, the cognition of its origin is not perfect. The well drilling data from 8 wells were applied to analyze the petrology and geochemistry characteristics of the dolomite of Yanshan Formation. The result shows that there developed 5 types of dolomites; the C and O isotope is generally negative and Sr isotope is positive. Combined with trace elements, cathodoluminescence and other geochemistry characteristics, it was considered that there are three origin mechanisms, including deep burial origin, hydrothermal origin and near surface evaporation seawater origin.

Key words: natural gas, production, reserve-production ratio, recovery percentage, reserves displacement rate

[1] Zenger D H,Dunham J B,Ethington R L. Concepts and models of dolomitization [M]. Tulsa:Society of Eonomic Paleontologists and Mineralogists,1980:1-320.
[2] Sun S Q. Dolomite reservoirs,porosity evolution and reservoir characteristic[J]. AAPG,Bulletin,1995,79(2):186-204.
[3] 翟永红,王泽中,王正允,等.塔里木地区奥陶系白云岩特征及成因[J].江汉石油学报,1992,14(4):1-7.
[4] 金之钧,朱东亚,胡文瑄,等.塔里木盆地热液活动地质地球化学特征及其对储层影响[J].地质学报,2006,80(2):245-253.
[5] 顾炎午,李国蓉,李宇翔,等.塔中地区下奥陶统白云岩特征及成因[J].天然气技术,2009,3(1):16-22.
[6] 钱一雄,尤东华.塔中地区西北奥陶系白云岩(化)成因分析[J].新疆石油地质,2006,27(2):143-150.
[7] 黎平,陈景山,王振宇.塔中地区奥陶系碳酸盐岩储层形成控制因素及储层类型研究[J].天然气勘探与开发,2003,26(1):37-420.
[8] 顾家裕.塔里木盆地下奥陶统白云岩特征及成因[J].新疆石油地质,2000,21(2):120-122.
[9] 李凌,谭秀成,陈景山,等.塔中北部中下奥陶统鹰山组白云岩特征及成因[J].西南石油大学学报,2007,29(1):34-36.
[10] 朱井泉,吴仕强,王国学,等.塔里木盆地寒武—奥陶系主要白云岩类型及孔隙发育特征[J].地学前缘,2008,15(2):67-79.
[11] 何莹,鲍志东,沈安江,等.塔里木盆地牙哈—英买力地区寒武系—下奥陶统白云岩形成机理[J].沉积学报,2006,24(6):806-818.
[12] Hardie L A. Dolomitization:a critical view of some current views[J]. Journal of Sedimentary Petrology,1987,57:166-183.
[13] Allan J R,WigginsWD. Dolomite reservoirs geochanical techniques for evaluation oringin and distribution[J]. AAPG Continuing Education Course Notes,1993,36:129-155.
[14] 刘树根,黄文明,张长俊,等.四川盆地白云岩成因的研究现状及存在问题[J].岩性油气藏,2008,20(2):6-15.
[15] 艾伦 I R,威金斯 W D.白云岩储层———白云岩成因地球化学分析技术[M].马锋,张亚光,杨柳明,等译.北京:石油工业出版社,2011:1-174.
[16] 赫云兰,刘波,秦善.白云岩化机理与白云岩成因问题研究[J].北京大学学报:自然科学版,2010,46(6):1 010-1 020.
[17] Allen P,Keith M L. Carbon isotope ratios and palaeosalinities of purbeck-Wealden carbonates[J]. Nature,1965,208:1 278-1 280.
[18] 马锋,顾家裕,许怀先,等.塔里木盆地东部上寒武统白云岩沉积特征[J].新疆石油地质,2009,30(1):33-37.
[19] 张学丰,胡文瑄,张军涛,等.塔里木盆地下奥陶统白云岩化流体来源的地球化学分析[J].地学前缘,2008,15(2):80-89.
[20] 江茂生,朱井泉,陈代钊,等.塔里木盆地奥陶纪碳酸盐岩碳、锶同位素特征及其对海平面变化的响应[J].中国科学:D 辑,2002,32(1):36-42.
[21] 郑剑峰,沈安江,莫妮亚,等.塔里木盆地寒武系—下奥陶统白云岩成因及识别特征[J].海相油气地质,2010,15(1):6-14.
[22] 吴仕强,朱井泉,王国学,等.塔里木盆地寒武—奥陶系白云岩结构构造类型及其形成机理[J].岩石学报,2008,24(6):1 390-1 400.
[23] 朱东亚,金之钧,胡文瑄.塔北地区下奥陶统白云岩热液重结晶作用及其油气储集意义[J].中国科学:地球科学,2010,40(2):156-170.
[24] 陈代钊.构造-热液白云岩化作用与白云岩储层[J].石油与天然气地质,2008,29(5):610-616.
[25] 孙靖,黄小平,金正奎,等.碳酸盐矿物阴极发光性的控制因素分析[J].沉积与特提斯地质,2009,29(1):102-108.
[26] Richter D K,Zinkernagel U. Zur Anwendung der Kathodolu minrszenz in der Karbonatpetrographie[J]. Geology Rundschau,1981,7(3):1 276-1 302.
[27] 陈永权,周新源,赵葵东,等.塔里木盆地中寒武统泥晶白云岩红层的地球化学特征与成因探讨[J].高校地质学报,2008,14(4):583-592.
[28] 杨玉芳,钟建华,陈志鹏,等.塔中地区寒武—奥陶系白云岩成因类型及空间分布[J].石油与天然气地质,2010,31(4):455-462.
[1] Guan Yunwen, Su Siyu, Pu Renhai, Wang Qichao, Yan Sujie, Zhang Zhongpei, Chen Shuo, Liang Dongge. Palaeozoic gas reservoir-forming conditions and main controlling factors in Xunyi area,southern Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(6): 77-88.
[2] HUANG Xiangsheng, YAN Zhuoyu, ZHANG Dongfeng, HUANG Heting, LUO Chengfei. Characteristics of multi-phase thermal fluid activity and natural gas migration-accumulation of Cenozoic in No. 2 fault zone of Qiongdongnan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 67-76.
[3] LIU Renjing, LU Wenming. Mechanism and field practice of enhanced oil recovery by injection-production coupling in fault block reservoirs [J]. Lithologic Reservoirs, 2024, 36(3): 180-188.
[4] MENG Zhiqiang, GE Lizhen, ZHU Xiaolin, WANG Yongping, ZHU Zhiqiang. Oil production contribution evaluation method of gas/water drive in gas-cap and edge-water reservoirs [J]. Lithologic Reservoirs, 2022, 34(5): 162-170.
[5] HE Wenyuan, YUN Jianbing, ZHONG Jianhua. Reservoir-forming mechanism of carbonate dolomitization of Permian Changxing Formation in northeastern Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(5): 1-25.
[6] WEN Huaguo, LIANG Jintong, ZHOU Gang, QIU Yuchao, LIU Sibing, LI Kunyu, HE Yuan, CHEN Haoru. Sequence-based lithofacies paleogeography and favorable natural gas exploration areas of Cambrian Xixiangchi Formation in Sichuan Basin and its periphery [J]. Lithologic Reservoirs, 2022, 34(2): 1-16.
[7] HE Xian, YAN Jianping, WANG Min, WANG Jun, GENG Bin, LI Zhipeng, ZHONG Guanghai, ZHANG Ruixiang. Relationship between pore structure and oil production capacity of low permeability sandstone: A case study of block F154 in south slope of Dongying Sag [J]. Lithologic Reservoirs, 2022, 34(1): 106-117.
[8] LI Zhiyuan, YANG Renchao, ZHANG Ji, WANG Yi, YANG Tebo, DONG Liang. Quantitative evaluation of natural gas diffusion loss rate: A case study of Su-X block in Sulige gas field [J]. Lithologic Reservoirs, 2021, 33(4): 76-84.
[9] KONG Chuixian, BA Zhongchen, CUI Zhisong, HUA Meirui, LIU Yuetian, MA Jing. Stress-sensitive productivity model of fractured horizontal wells in volcanic reservoirs [J]. Lithologic Reservoirs, 2021, 33(4): 166-175.
[10] YANG Meihua, ZHONG Haiquan, LI Yingchuan. New production index curve of fractured-vuggy carbonate reservoirs [J]. Lithologic Reservoirs, 2021, 33(2): 163-170.
[11] KONG Hongxi, WANG Yuanfei, ZHOU Fei, ZHU Jun, CHEN Yangyang, SONG Dekang. Hydrocarbon accumulation conditions in Eboliang structural belt and its exploration implications [J]. Lithologic Reservoirs, 2021, 33(1): 175-185.
[12] LIU Yuzuo, SHI Wanzhong, LIU Kai, WANG Ren, WU Rui. Natural gas accumulation patterns of Upper Paleozoic in eastern Hangjinqi area,Ordos Basin [J]. Lithologic Reservoirs, 2020, 32(3): 56-67.
[13] DENG Chenggang, LI Jiangtao, CHAI Xiaoying, CHEN Fenjun, YANG Xiyan, WANG Haicheng, LIAN Yunxiao, TU Jiasha. Early identification methods of water invasion in weak water drive gas reservoirs in Sebei gas field,Qaidam Basin [J]. Lithologic Reservoirs, 2020, 32(1): 128-134.
[14] LONG Ming, LIU Yingxian, CHEN Xiaoqi, WANG Meinan, YU Dengfei. Optimization adjustment of injection-production structure based on meandering river reservoir architecture [J]. Lithologic Reservoirs, 2019, 31(6): 145-154.
[15] SUN Liang, LI Yong, YANG Jing, LI Baozhu. Water-cut rising patterns and optimal water injection techniques of horizontal wells in thin carbonate reservoir with bottom water [J]. Lithologic Reservoirs, 2019, 31(6): 135-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Qiulian, LI Aiqin, SUN Yanni, CUI Panfeng. Classification method for extra-low permeability reservoirs[J]. Lithologic Reservoirs, 2007, 19(4): 51 -56 .
[2] ZHANG Jie, ZHAO Yuhua. Seismic sequence of Triassic Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(4): 71 -74 .
[3] YANG Zhanlong,ZHANG Zhenggang,CHEN Qilin,GUO Jingyi,SHA Xuemei,LIU Wensu. Using multi-parameters analysis of seismic information to evaluate lithologic traps in continental basins[J]. Lithologic Reservoirs, 2007, 19(4): 57 -63 .
[4] ZHU Xiaoyan, LI Aiqin, DUAN Xiaochen, TIAN Suiliang, LIU Meirong. Fine stratigraphic classification and correlation of Chang 3 reservoir of Yanchang Formation in Zhenbei Oilfield[J]. Lithologic Reservoirs, 2007, 19(4): 82 -86 .
[5] FANG Chaohe, WANG Yifeng, ZHENG Dewen, GE Zhixin. Maceral and petrology of Lower Tertiary source rock in Qintong Sag, Subei Basin[J]. Lithologic Reservoirs, 2007, 19(4): 87 -90 .
[6] HAN Chunyuan,ZHAO Xianzheng,JIN Fengming,WANG Quan,LI Xianping,WANG Suqing. “Multi-factor controlling, four-factor entrapping and key-factor enrichment”of stratigraphic-lithologic reservoirs and exploration practice in Erlian Basin (Ⅳ)———Exploration practice[J]. Lithologic Reservoirs, 2008, 20(1): 15 -20 .
[7] DAI Chaocheng, ZHENG Rongcai, WEN Huaguo, ZHANG Xiaobing. Sequence-based lithofacies and paleogeography mapping of Paleogene in Lvda area, Liaodongwan Basin[J]. Lithologic Reservoirs, 2008, 20(1): 39 -46 .
[8] YIN Yanshu, ZHANG Shangfeng, YIN Taiju. High resolution sequence stratigraphy framework and the distribution of sandbodies in salt lake of Qianjiang Formation in Zhongshi Oilfield[J]. Lithologic Reservoirs, 2008, 20(1): 53 -58 .
[9] SHI Xuefeng, DU Haifeng. Study on the sedimentary facies of the member 3 and 4+5 of Yanchang Formation in Jiyuan area[J]. Lithologic Reservoirs, 2008, 20(1): 59 -63 .
[10] YAN Shibang, HUWangshui, LI Ruisheng, GUAN Jian, LI Tao, NIE Xiaohong. Structural features of contemporaneous thrust faults in Hongche fault belt of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(1): 64 -68 .
TRENDMD: