Lithologic Reservoirs ›› 2014, Vol. 26 ›› Issue (2): 89-95.doi: 10.3969/j.issn.1673-8926.2014.02.014

Previous Articles     Next Articles

Short-term base level cycle and reservoir genesis analysis of Chang 8 oil reservoir set in Jiyuan Oilfield

ZHAO Hongbo1, TANG Hui2, CHENG Gang3, WANG Dingfeng1, ZHANG Yuqin1, ZHANG Xiaodong1   

  1. 1. No. 2 Gas Production Plant, PetroChina Changqing Oilfield Company, Xi’an 710021, China; 2. Changnan Project Team, PetroChina Changqing Oilfield Company, Xi’an 710021, China; 3. Department of Archives, PetroChina Changqing Oilfield Company, Xi’an 710021, China
  • Online:2014-04-06 Published:2014-04-06

Abstract:

Based on the theory of high resolution sequence stratigraphy, the short-term base level cycle of delta front of Chang 8 oil reservoir set in Jiyuan Oilfield was divided into two types, including non-symmetric short-time cycle and symmetric short-time cycle. The non-symmetric short-time cycle includes upward-deepening and upward-shallowing cycles, and the symmetric short-time cycle includes three kinds of cycle: the ascending half cycle thickness is greater than the descending half cycle thickness, the ascending half cycle thickness is less than the descending half cycle thickness, and the ascending half cycle thickness is approximately equal to the descending half cycle thickness. According to the forming reason, the reservoir sand bodies of Chang 8 oil reservoir set were divided into three categories and six types, and each kind of sand body is obviously controlled by relationship between the accommodate space(A) and sediment supply(S). In the process of the base level rising, when the A/S<1, mainly formed cutting distributary channel sandbody, while when the A/S>1, mainly formed complete type channel sand body. In the process of base level falling, when the A/S<1, mainly formed isolated type mouth bar sand body, while when A/S>1, mainly formed superposition type mouth bar sand body and far bar sand body. In a complete base level cycle, if there not only kept rising short-term base level of deposition, but also retained the decline phase deposition, so the composite dam sand bodies formed. Chang 8 oil reservoir set in Jiyuan Oilfield belongs to lithologic reservoir. Therefore, further study on shortterm base level change rule and its control effect on sand bodies, forecasting and looking for underwater distributary channel, the superposition type sand dam and mouth bar sand bodies will be the main direction of next exploration.

Key words:  sequence models, sequence framework, controlling factor, Paleogene Dainan Formation, Gaoyou Sag, northern Jiangsu Basin

[1] LUO Qun, ZHANG Zeyuan, YUAN Zhenzhu, XU Qian, QIN Wei. Connotation,evaluation and optimization of tight oil sweet spots: A case study of Cretaceous Xiagou Formation in Qingxi Sag,Jiuquan Basin [J]. Lithologic Reservoirs, 2022, 34(4): 1-12.
[2] MA Zhengwu, GUAN Dayong, WANG Qiming, LIU Yaojun, LI Xiaohui. Sedimentary characteristics and controlling factors of sublacustrine fans of the third member of Paleogene Dongying Formation in Liaozhong Sag [J]. Lithologic Reservoirs, 2022, 34(2): 131-140.
[3] ZHANG Menglin, LI Guoqin, HE Jia, HENG De. Main controlling factors of Ordovician Wufeng-Silurian Longmaxi shale gas enrichment in Tiangongtang structure, southwestern margin of Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(2): 141-151.
[4] XU Shiyu, LIN Yi, ZENG Yiyang, ZHAO Chunni, HE Kailai, YANG Jing, LI Yang, ZHU Yi. Gas-water distribution characteristics and main controlling factors of Lower Permian Qixia Formation in Shuangyushi area, NW Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(1): 63-72.
[5] XIONG Jiabei, HE Dengfa. Distribution characteristics and controlling factors of global giant carbonate stratigraphic-lithologic oil and gas fields [J]. Lithologic Reservoirs, 2022, 34(1): 187-200.
[6] SHAO Xiaozhou, WANG Miaomiao, QI Yalin, HE Tongtong, ZHANG Xiaolei, PANG Jinlian, GUO Yixuan. Characteristics and main controlling factors of Chang 8 reservoir in northern Pingliang area,Ordos Basin [J]. Lithologic Reservoirs, 2021, 33(6): 59-69.
[7] ZHAO Xiaomeng, GUO Feng, PENG Xiaoxia, ZHANG Cuiping, GUO Ling, SHI Yuxiang. Reservoir characteristics and main controlling factors of Yan 10 sandy braided fluvial facies in Anbian area,Ordos Basin [J]. Lithologic Reservoirs, 2021, 33(6): 124-134.
[8] YIN Xingping, JIANG Yuqiang, FU Yonghong, ZHANG Xuemei, LEI Zhian, CHEN Chao, ZHANG Haijie. Shale lithofacies and reservoir characteristics of Wufeng Formation-lower Long 1 submember of Longmaxi Formation in western Chongqing [J]. Lithologic Reservoirs, 2021, 33(4): 41-51.
[9] ZHANG Zhiheng, TIAN Jijun, HAN Changcheng, ZHANG Wenwen, DENG Shouwei, SUN Guoxiang. Reservoir characteristics and main controlling factors of Lucaogou Formation in Jimsar Sag,Jungger Basin [J]. Lithologic Reservoirs, 2021, 33(2): 116-126.
[10] GAO Jixian, SUN Wenju, WU Peng, DUAN Changjiang. Accumulation characteristics of Upper Paleozoic tight sandstone in Shenfu block,northeastern margin of Ordos Basin [J]. Lithologic Reservoirs, 2021, 33(1): 121-130.
[11] TIAN Qinghua, LIU Jun, ZHANG Chen, WANG Wensheng, HUANG Dan. Characteristics and controlling factors of Lower Paleozoic reservoir in Sulige Gas Field [J]. Lithologic Reservoirs, 2020, 32(2): 33-42.
[12] YANG Zhanlong, SHA Xuemei, WEI Lihua, HUANG Junping, XIAO Dongsheng. Seismic subtle sequence boundary identification,high-frequency sequence framework establishment and lithologic trap exploration: a case study of Jurassic to Cretaceous in the western margin of Turpan-Kumul Basin [J]. Lithologic Reservoirs, 2019, 31(6): 1-13.
[13] BIAN Xiaobing, HOU Lei, JIANG Tingxue, GAO Dongwei, ZHANG Chi. Influencing factors of fracture geometry in deep shale gas wells [J]. Lithologic Reservoirs, 2019, 31(6): 161-168.
[14] SU Penghui, XIA Zhaohui, LIU Lingli, DUAN Lijiang, WANG Jianjun, XIAO Wenjie. Main controlling factors of productivity and reasonable development methods of low-rank coalbed methane in block M of Australia [J]. Lithologic Reservoirs, 2019, 31(5): 121-128.
[15] DUAN Zhiyou, LI Xianqing, CHEN Chunfang, MA Liyuan, LUO Yuan. Gas and water distribution and its controlling factors of Xiashihezi Formation in J58 well area,Hangjinqi area [J]. Lithologic Reservoirs, 2019, 31(3): 45-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Zhanlong,ZHANG Zhenggang,CHEN Qilin,GUO Jingyi,SHA Xuemei,LIU Wensu. Using multi-parameters analysis of seismic information to evaluate lithologic traps in continental basins[J]. Lithologic Reservoirs, 2007, 19(4): 57 -63 .
[2] FANG Chaohe, WANG Yifeng, ZHENG Dewen, GE Zhixin. Maceral and petrology of Lower Tertiary source rock in Qintong Sag, Subei Basin[J]. Lithologic Reservoirs, 2007, 19(4): 87 -90 .
[3] LIN Chengyan, TAN Lijuan, YU Cuiling. Research on the heterogeneous distribution of petroleum(Ⅰ)[J]. Lithologic Reservoirs, 2007, 19(2): 16 -21 .
[4] WANG Tianqi, WANG Jiangong, LIANG Sujuan, SHA Xuemei. Fine oil exploration of Putaohua Formation in Xujiaweizi area, Songliao Basin[J]. Lithologic Reservoirs, 2007, 19(2): 22 -27 .
[5] WANG Xiwen,SHI Lanting,YONG Xueshan,YNAG Wuyang. Study on seismic impedance inversion[J]. Lithologic Reservoirs, 2007, 19(3): 80 -88 .
[6] HE Zongbin,NI Jing,WU Dong,LI Yong,LIU Liqiong,TAI Huaizhong. Hydrocarbon saturation determined by dual-TE logging[J]. Lithologic Reservoirs, 2007, 19(3): 89 -92 .
[7] YUAN Shengxue,WANG Jiang. Identification of the shallow gas reservoir in Shanle area,Tuha Basin[J]. Lithologic Reservoirs, 2007, 19(3): 111 -113 .
[8] CHEN Fei,WEI Dengfeng,YU Xiaolei,WU Shaobo. Sedimentary facies of Chang 2 oil-bearing member of Yanchang Formation in Yanchi-Dingbian area, Ordos Basin[J]. Lithologic Reservoirs, 2010, 22(1): 43 -47 .
[9] XU Yunxia,WANG Shanshan,YANG Shuai. Using Walsh transform to improve signal-to-noise ratio of seismic data[J]. Lithologic Reservoirs, 2009, 21(3): 98 -100 .
[10] LI Jianming,SHI Lingling,WANG Liqun,WU Guangda. Characteristics of basement reservoir in Kunbei fault terrace belt in southwestern Qaidam Basin[J]. Lithologic Reservoirs, 2011, 23(2): 20 -23 .
TRENDMD: