Lithologic Reservoirs ›› 2016, Vol. 28 ›› Issue (2): 80-85.doi: 10.3969/j.issn.1673-8926.2016.02.011

Previous Articles     Next Articles

Sedimentary environment of Lower Triassic Baikouquan Formation in Mahu Sag, Junggar Basin: A case study from Ma 18 well

Li Xing1, Zhang Liqiang1, Shi Hui2, Zheng Yiding1   

  1.  1. School of Geosciences , China University of Petroleum , Qingdao 266580 , Shandong , China ; 2. Institute of Geology and Geophysics , Chinese Academy of Sciences , Beijing 100029 , China
  • Online:2016-03-20 Published:2016-03-20

Abstract:

The ancient sedimentary environment of clastic rock directly controls the type, distribution and evolution of sedimentary facies, which affects the distribution of high quality reservoir and favorable oil and gas area. The geochemical characteristics of element were used to analyze the sedimentary environment of clastic rock reservoir, and portable X-ray fluorescence (XRF) tester was applied to systematically test the contents of more than 40 elements from 415 groups of samples of Lower Triassic Baikouquan Formation in Ma 18 well in Mahu Sag in the northwestern margin of Junggar Basin. The geochemical characteristics of elements and the changing trend of paleoclimate, paleosalinity and oxidation-reduction states of the sedimentary environment were analyzed. The results show that element content and ratio have certain fluctuations from bottom to top, while in overall, it was formed in the warm and humid, freshwater, brackish water, weak layering and oxidizing environment. In addition, from T1b1  to T1b3 , the water temperature, humidity and salinity all have a tendency to increase, and the Si/Al ratio has a certain positive correlation with oil saturation.

Key words: virtual wells technology , PETREL-RE technology , segmentation and integration technology , numerical simulation , history matching , Longhupao Oilfield

[1] CUI Chuanzhi, LI Jing, WU Zhongwei. Simulation of microscopic seepage characteristics of CO2 immiscible flooding under the effect of diffusion and adsorption [J]. Lithologic Reservoirs, 2024, 36(6): 181-188.
[2] LIU Renjing, LU Wenming. Mechanism and field practice of enhanced oil recovery by injection-production coupling in fault block reservoirs [J]. Lithologic Reservoirs, 2024, 36(3): 180-188.
[3] BAO Hanyong, LIU Chao, GAN Yuqing, XUE Meng, LIU Shiqiang, ZENG Lianbo, MA Shijie, LUO Liang. Paleotectonic stress field and fracture characteristics of shales of Ordovician Wufeng Formation to Silurian Longmaxi Formation in southern Fuling area,Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(1): 14-22.
[4] LI Fengfeng, NI Xiaowei, XU Sihui, WEI Xinlu, LIU Diren. Response characteristics and correction of LWD laterolog in anisotropic formations and deviated boreholes [J]. Lithologic Reservoirs, 2023, 35(3): 161-168.
[5] Lü Dongliang, YANG Jian, LIN Liming, ZHANG Kaili, CHEN Yanhu. Characterization model of oil-water relative permeability curves of sandstone reservoir and its application in numerical simulation [J]. Lithologic Reservoirs, 2023, 35(1): 145-159.
[6] ZHANG Wei, LI Lei, QIU Xinwei, GONG Guangchuan, CHENG Linyan, GAO Yifan, YANG Zhipeng, YANG Lei. A/S control on spatiotemporal evolution of deltas in rifted lacustrine basin and its numerical simulation: A case study of Paleogene Wenchang Formation in Lufeng 22 subsag,Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2022, 34(3): 131-141.
[7] DONG Min, GUO Wei, ZHANG Linyan, WU Zhonghai, MA Licheng, DONG Hui, FENG Xingqiang, YANG Yuehui. Characteristics of paleotectonic stress field and fractures of WufengLongmaxi Formation in Luzhou area, southern Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(1): 43-51.
[8] ZHANG Haoyu, LI Mao, KANG Yongmei, WU Zemin, WANG Guang. Reservoir architecture and fine characterization of remaining oil of Chang 3 reservoir in Zhenbei oilfield,Ordos Basin [J]. Lithologic Reservoirs, 2021, 33(6): 177-188.
[9] ZHU Suyang, LI Dongmei, LI Chuanliang, LI Huihui, LIU Xiongzhi. Re-discussion on principle of constant porosity during primary deformation of rock [J]. Lithologic Reservoirs, 2021, 33(2): 180-188.
[10] LIU Mingming, WANG Quan, MA Shou, TIAN Zhongzheng, CONG Yan. Well placement optimization of coalbed methane based on hybrid particle swarm optimization algorithm [J]. Lithologic Reservoirs, 2020, 32(6): 164-171.
[11] LI Zihan, HE Yufa, ZHANG Binhai, ZHONG Haiquan. Solution and realization of coupled model of temperature and pressure field in deep water gas well testing [J]. Lithologic Reservoirs, 2020, 32(4): 163-171.
[12] GUAN Hua, GUO Ping, ZHAO Chunlan, TAN Baoguo, XU Dongmei. Mechanism of nitrogen flooding in Yong 66 block of Yong'an Oilfield,Bohai Bay Basin [J]. Lithologic Reservoirs, 2020, 32(2): 149-160.
[13] LUO Zhifeng, HUANG Jingyun, HE Tianshu, HAN Mingzhe, ZHANG Jintao. Extending regularity of fracture height by acid fracturing in carbonate reservoir: a case study of Qixia Formation in western Sichuan [J]. Lithologic Reservoirs, 2020, 32(2): 169-176.
[14] ZHOU Rui, SU Yuliang, MA Bing, ZHANG Qi, WANG Wendong. CO2 huff and puff simulation in horizontal well with random fractal volume fracturing [J]. Lithologic Reservoirs, 2020, 32(1): 161-168.
[15] LONG Ming, LIU Yingxian, CHEN Xiaoqi, WANG Meinan, YU Dengfei. Optimization adjustment of injection-production structure based on meandering river reservoir architecture [J]. Lithologic Reservoirs, 2019, 31(6): 145-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Zhanlong,ZHANG Zhenggang,CHEN Qilin,GUO Jingyi,SHA Xuemei,LIU Wensu. Using multi-parameters analysis of seismic information to evaluate lithologic traps in continental basins[J]. Lithologic Reservoirs, 2007, 19(4): 57 -63 .
[2] FANG Chaohe, WANG Yifeng, ZHENG Dewen, GE Zhixin. Maceral and petrology of Lower Tertiary source rock in Qintong Sag, Subei Basin[J]. Lithologic Reservoirs, 2007, 19(4): 87 -90 .
[3] LIN Chengyan, TAN Lijuan, YU Cuiling. Research on the heterogeneous distribution of petroleum(Ⅰ)[J]. Lithologic Reservoirs, 2007, 19(2): 16 -21 .
[4] WANG Tianqi, WANG Jiangong, LIANG Sujuan, SHA Xuemei. Fine oil exploration of Putaohua Formation in Xujiaweizi area, Songliao Basin[J]. Lithologic Reservoirs, 2007, 19(2): 22 -27 .
[5] WANG Xiwen,SHI Lanting,YONG Xueshan,YNAG Wuyang. Study on seismic impedance inversion[J]. Lithologic Reservoirs, 2007, 19(3): 80 -88 .
[6] HE Zongbin,NI Jing,WU Dong,LI Yong,LIU Liqiong,TAI Huaizhong. Hydrocarbon saturation determined by dual-TE logging[J]. Lithologic Reservoirs, 2007, 19(3): 89 -92 .
[7] YUAN Shengxue,WANG Jiang. Identification of the shallow gas reservoir in Shanle area,Tuha Basin[J]. Lithologic Reservoirs, 2007, 19(3): 111 -113 .
[8] CHEN Fei,WEI Dengfeng,YU Xiaolei,WU Shaobo. Sedimentary facies of Chang 2 oil-bearing member of Yanchang Formation in Yanchi-Dingbian area, Ordos Basin[J]. Lithologic Reservoirs, 2010, 22(1): 43 -47 .
[9] XU Yunxia,WANG Shanshan,YANG Shuai. Using Walsh transform to improve signal-to-noise ratio of seismic data[J]. Lithologic Reservoirs, 2009, 21(3): 98 -100 .
[10] LI Jianming,SHI Lingling,WANG Liqun,WU Guangda. Characteristics of basement reservoir in Kunbei fault terrace belt in southwestern Qaidam Basin[J]. Lithologic Reservoirs, 2011, 23(2): 20 -23 .
TRENDMD: