Lithologic Reservoirs ›› 2017, Vol. 29 ›› Issue (6): 101-107.doi: 10.3969/j.issn.1673-8926.2017.06.013

Previous Articles     Next Articles

Wide-frequency prospecting technology and its application on deep-seated Jurassic exploration in northern margin of Qaidam Basin

WANG Yongsheng1, HU Jie1, ZHANG Jing2, WANG Chuanwu2, ZHU Bo1, WU Yongguo3   

  1. 1. Department of Geophysical Exploration, PetroChina Qinghai Oilfield Company, Dunhuang 736202, Gansu, China;
    2. Research Institute of Exploration and Development, PetroChina Qinghai Oilfield Company, Dunhuang 736202, Gansu, China;
    3. Qinghai Geophysical Exploration Department, BGP Inc., CNPC, Dunhuang 736202, Gansu, China
  • Received:2017-07-05 Revised:2017-08-14 Online:2017-11-21 Published:2017-11-21

Abstract: The targets are located in the deep Jurassic and basement in northern margin of Qaidam Basin. Under the influence of complex seismic geological conditions,the signal-to-noise ratio and resolution of seismic data are low, so it is difficult to implement favorable structural trap. Based on wide-frequency prospecting, a set of integrated seismic exploration technology of acquisition,processing and interpretation were carried out. The results show that deep imaging quality of the new acquisition seismic data is improved,and the reflection of Jurassic structure, fault and bedrock is clear, while the low frequency information is rich, effective bandwidth is broadened, and resolution is significantly improved. The integrated technology uses the low frequency vibroseis seismic excitation to enhance wave signal energy and broaden the original data bandwidth. High density wide azimuth observation ensures continuous, symmetric and uniform sampling of the wave field, and improves the signal-to-noise ratio. The precision of the complex structure imaging is improved by high precision chromatography first-break refraction static correction. The wide frequency inversion reservoir prediction accurately depicts the favorable sand body. The application results show that broadband seismic exploration technology can effectively solve the deep imaging problems in this area, and it is an effective technical support for oilfield exploration and development.

Key words: shale gas, accumulation conditions, Doushantuo Formation, Neoproterozoic, NW Hunan province

CLC Number: 

  • P631.4
[1] 任收麦, 包书景, 张毅, 等.柴达木盆地北缘侏罗系页岩气地质条件.地质通报, 2016, 35(2/3):204-210. REN S M, BAO S J, ZHANG Y, et al. Geological conditions of the Jurassic shale gas on the northern margin of Qaidam Basin. Geological Bulletin of China, 2016, 35(2/3):204-210.
[2] 侯海海. 柴达木盆地北缘侏罗系煤储层物性特征与综合评价.北京:中国矿业大学(北京), 2015. HOU H H. Physical properties and comprehensive evaluation of coalbed methane reservoirs of Jurassic in the northern Qaidam Basin. Beijing:China University of Mining & Technology(Beijing), 2015.
[3] 陈吉, 张永梅, 史基安, 等.柴北缘冷湖-马仙地区古近系-新近系成岩作用特征.岩性油气藏, 2012, 24(2):21-25. CHEN J, ZHANG Y M, SHI J A, et al. Diagenesis of PaleogeneNeogene sandstone reservoirs in Lenghu-Maxian area, northern Qaidam Basin. Lithologic Reservoirs, 2012, 24(2):21-25.
[4] 孙国强, 杜忠明, 贾艳艳, 等.柴达木盆地北缘西段古近纪以来沉积模式研究.岩性油气藏, 2012, 24(4):13-18. SUN G Q, DU Z M, JIA Y Y, et al. Sedimentary model since Paleogene in northern margin of Qaidam Basin. Lithologic Reser-voirs, 2012, 24(4):13-18.
[5] 孟万斌, 李敏, 刘家铎, 等.柴达木盆地北缘潜西地区路乐河组末端扇沉积体系分析.岩性油气藏, 2010, 22(4):37-42. MENG W B, LI M, LIU J D, et al. Terminal fan sedimentary system of Lulehe Formation in Qianxi area in northern margin of Qaidam Basin. Lithologic Reservoirs, 2010, 22(4):37-42.
[6] 付小东, 饶丹, 秦建中, 等.柴达木盆地北缘地区中侏罗统大煤沟组页岩油形成地质条件.岩性油气藏, 2014, 26(6):20-27. FU X D, RAO D, QIN J Z, et al. Geological conditions for shale oil forming of Middle Jurassic Dameigou Formation in the northern margin of Qaidam Basin. Lithologic Reservoirs, 2014, 26(6):20-27.
[7] 陶知非, 赵永林, 马磊. 低频地震勘探与低频可控震源. 物探装备, 2011, 21(2):71-76. TAO Z F, ZHAO Y L, MA L. Low frequency seismic prospecting and Low frequency vibroseis. Equipment of Geophysical Prospecting, 2011, 21(2):71-76.
[8] 陶知非, 刘兴元, 王志杰.可控震源低频能量激发在低频地震数据采集应用中的误区.物探装备, 2012, 22(4):211-217. TAO Z F, LIU X Y, WANG Z J. Pitfalls of vibroseis application in low frequency seismic data acquisition. Equipment of Geophysical Prospecting, 2012, 22(4):211-217.
[9] 田玉昆, 李桂林, 刘晖, 等.哈拉湖地区低频可控震源天然气水合物地球物理响应特征研究. 地球物理学报, 2016, 59(11):4287-4296. TIAN Y K, LI G L, LIU H, et al. Geophysical response characteristics of gas hydrate in Harhu region based on low-frequency vibroseis data. Chinese Journal of Geophysics, 2016, 59(11):4287-4296.
[10] 陈敬国, 刘宏飞, 刘璐, 等. 可控震源在复杂障碍区地震勘探中的应用及效果. 非常规油气, 2016, 3(4):25-31. CHEN J G, LIU H F, LIU L, et al. Application and effect of vibrator in seismic exploration in complex obstacle area. Unconventional Oil & Gas, 2016, 3(4):25-31.
[11] 孔德政, 于敏杰, 刘新文, 等.两宽一高地震采集技术在复杂山前带的应用及效果分析.新疆石油天然, 2016, 12(1):33-38. KONG D Z, YU M J, LIU X W, et al. Application and effects of the "two-wide one-high" seismic acquisition technique in complex piedmont. Xinjiang Oil & Gas, 2016, 12(1):33-38.
[12] 吴永国, 尹吴海, 何永清, 等.三维观测系统属性均匀性的定量分析.石油地球物理勘探, 2012, 47(3):361-365. WU Y G, YIN W H, HE Y Q, et al. Uniformity quantitative analysis method of 3 D geometry attribute. Oil Geophysical Prospecting, 2012, 47(3):361-365.
[13] 牟永光, 裴正林.三维复杂介质地震数值模拟.北京:石油工业出版社, 2015:188-205. MU Y G, PEI Z L. Numerical simulation of 3 D seismic in complex media. Beijing:Petroleum Industry Press, 2015:188-205.
[14] 吴杰, 苏勤, 王建华, 等.层析静校正技术在柴北缘地区的应用.岩性油气藏, 2008, 20(3):79-82. WU J, SU Q, WANG J H, et al. Application of tomographic static correction in northern margin of Qaidam Basin. Lithologic Reser-voirs, 2008, 20(3):79-82.
[15] 公亭, 王兆磊, 顾小弟, 等.宽频地震资料处理配套技术.石油地球物理勘探, 2016, 51(3):457-466. GONG T, WANG Z L, GU X D, et al. Broadband seismic data matching processing. Oil Geophysical Prospecting, 2016, 51(3):457-466.
[16] BAETEN G, MAAG J W, PLESSIX R E, et al. The use of low frequencies in a full-waveform inversion and impedance inversion land seismic case study. Geophysical Prospecting, 2013, 61(4):701-711.
[1] Guan Yunwen, Su Siyu, Pu Renhai, Wang Qichao, Yan Sujie, Zhang Zhongpei, Chen Shuo, Liang Dongge. Palaeozoic gas reservoir-forming conditions and main controlling factors in Xunyi area,southern Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(6): 77-88.
[2] YAN Jianping, LAI Siyu, GUO Wei, SHI Xuewen, LIAO Maojie, TANG Hongming, HU Qinhong, HUANG Yi. Research progress on casing deformation types and influencing factors in geological engineering of shale gas wells [J]. Lithologic Reservoirs, 2024, 36(5): 1-14.
[3] YANG Xuefeng, ZHAO Shengxian, LIU Yong, LIU Shaojun, XIA Ziqiang, XU Fei, FAN Cunhui, LI Yutong. Main controlling factors of shale gas enrichment of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Ningxi area,Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 99-110.
[4] BAO Hanyong, ZHAO Shuai, ZHANG Li, LIU Haotian. Exploration achievements and prospects for shale gas of Middle-Upper Permian in Hongxing area,eastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(4): 12-24.
[5] SHEN Youyi, WANG Kaifeng, TANG Shuheng, ZHANG Songhang, XI Zhaodong, YANG Xiaodong. Geological modeling and“sweet spot”prediction of Permian coal measures shale reservoirs in Yushe-Wuxiang block,Qinshui Basin [J]. Lithologic Reservoirs, 2024, 36(4): 98-108.
[6] DUAN Yifei, ZHAO Weiwei, YANG Tianxiang, LI Fukang, LI Hui, WANG Jianan, LIU Yuchen. Source-reservoir characteristics and accumulation rules of shale gas of Permian Shanxi Formation in Yan'an area, Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(3): 72-83.
[7] CHENG Jing, YAN Jianping, SONG Dongjiang, LIAO Maojie, GUO Wei, DING Minghai, LUO Guangdong, LIU Yanmei. Low resistivity response characteristics and main controlling factors of shale gas reservoirs of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Changning area,southern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(3): 31-39.
[8] JI Yubing, GUO Bingru, MEI Jue, YIN Zhijun, ZOU Chen. Fracture modeling of shale reservoirs of Silurian Longmaxi Formation in Luobu syncline in Zhaotong National Shale Gas Demonstration Area, southern margin of Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(3): 137-145.
[9] YANG Bowei, SHI Wanzhong, ZHANG Xiaoming, XU Xiaofeng, LIU Yuzuo, BAI Luheng, YANG Yang, CHEN Xianglin. Pore structure characteristics and gas-bearing properties of shale gas reservoirs of Lower Carboniferous Dawuba Formation in southern Guizhou [J]. Lithologic Reservoirs, 2024, 36(1): 45-58.
[10] WANG Xiaojuan, CHEN Shuangling, XIE Jirong, MA Hualing, ZHU Deyu, PANG Xiaoting, YANG Tian, LYU Xueying. Accumulation characteristics and main controlling factors of tight sandstone of Jurassic Shaximiao Formation in southwestern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(1): 78-87.
[11] WEI Quanchao, LI Xiaojia, LI Feng, HAO Jingyu, DENG Shuanglin, WU Juan, DENG Bin, WANG Daojun. Development characteristics and significance of fracture veins of Lower Cambrian Qiongzhusi Formation in Wangcang area at Micang Mountain front, Sichuan Basin [J]. Lithologic Reservoirs, 2023, 35(5): 62-70.
[12] LIU Zhongquan, ZHAO Leqiang, ZENG Zhiping, TIAN Jijun, LI Zhengqiang, LUO Jinchang, HU Meiling. Shale oil accumulation conditions of Permian Lucaogou Formation in Fukang fault zone,Junggar Basin [J]. Lithologic Reservoirs, 2023, 35(3): 126-137.
[13] YANG Yueming, ZHANG Shaomin, JIN Tao, MING Ying, GUO Ruiying, WANG Xingzhi, HAN Luyuan. Characteristics and exploration potential of shale reservoirs of Permian Longtan Formation in southern Sichuan Basin [J]. Lithologic Reservoirs, 2023, 35(1): 1-11.
[14] YAN Jianping, LUO Jingchao, SHI Xuewen, ZHONG Guanghai, ZHENG Majia, HUANG Yi, TANG Hongming, HU Qinhong. Fracture development models and significance of Ordovician WufengSilurian Longmaxi shale in Luzhou area,southern Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(6): 60-71.
[15] GUO Meijie, SHI Baohong, DONG Xiongying, LI Haodong, HE Chuan. Hydrocarbon accumulation conditions and main controlling factors of Paleogene in Chenghai slope,Huanghua Depression [J]. Lithologic Reservoirs, 2022, 34(3): 82-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Lithologic Reservoirs, 2022, 34(2): 0 .
[2] LI Zaiguang,LI Lin. Automatic mapping based on well data[J]. Lithologic Reservoirs, 2007, 19(2): 84 -89 .
[3] CHENG Yuhong,GUO Yanru,ZHENG Ximing,FANG Naizhen,MA Yuhu. The interpretation method and application effect determined by multiple seismic and logging factors[J]. Lithologic Reservoirs, 2007, 19(2): 97 -101 .
[4] LIU Juntian,JIN Zhenjia,LI Zaiguang,TAN Xinping,GUO Lin,WANG Bo,LIU Yuxiang. Controlling factors for lithologic hydrocarbon reservoirs and petroleum prospecting target in Xiaocaohu area , Taibei Sag[J]. Lithologic Reservoirs, 2007, 19(3): 44 -47 .
[5] SHANG Changliang, FU Shouxian. Application of 3D seismic survey in loess tableland[J]. Lithologic Reservoirs, 2007, 19(3): 106 -110 .
[6] WANG Changyong, ZHENG Rongcai, WANG Jianguo, CAO Shaofang, Xiao Mingguo. Sedimentary characteristics and evolution of Badaowan Formation of Lower Jurassic in northwest margin of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(2): 37 -42 .
[7] WANG Ke1 LIU Xianyang, ZHAO Weiwei, SONG Jianghai, SHI Zhenfeng, XIANG Hui. Char acter istics and geological significance of seismites of Paleogene in Yangxin Subsag of J iyang Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 54 -59 .
[8] SUN Hongbin, ZHANG Fenglian. Structural-sedimentary evolution char acter istics of Paleogene in Liaohe Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 60 -65 .
[9] LI Chuanliang. Can uplift r esult in abnormal high pr essur e in formation?[J]. Lithologic Reservoirs, 2008, 20(2): 124 -126 .
[10] WEI Qinlian,ZHENG Rongcai,XIAO Ling,MA Guofu,DOU Shijie,TIAN Baozhong. Study on horizontal heterogeneity in Serie Inferiere of Triassic in 438b block , Algeria[J]. Lithologic Reservoirs, 2009, 21(2): 24 -28 .
TRENDMD: