Lithologic Reservoirs ›› 2019, Vol. 31 ›› Issue (2): 83-95.doi: 10.12108/yxyqc.20190210
Previous Articles Next Articles
DING Jianghui1,2,3, ZHANG Jinchuan1,2, LI Xingqi1,2, LANG Yue1,2, ZHENG Yuyan1,2, XU Longfei1,2
CLC Number:
[1] 张金川, 徐波, 聂海宽, 等.中国页岩气资源勘探潜力.天然气工业, 2008, 28(6):136-140. ZHANG J C, XU B NIE H K, et al. Exploration potential of shale gas resources in China. Natural Gas Industry, 2008, 28(6):136-140. [2] 邹才能, 董大忠, 王社教, 等.中国页岩气形成机理、地质特征及资源潜力.石油勘探与开发, 2010, 37(6):641-653. ZOU C N, DONG D Z, WANG S J, et al. Geological characteristics,formation mechanism and resource potential of shale gas in China. Petroleum Exploration and Development, 2010, 37(6):641-653. [3] 董大忠, 邹才能, 杨桦, 等.中国页岩气勘探开发进展与发展前景.石油学报, 2012, 33(增刊1):107-114. DONG D Z, ZOU C N, YANG H, et al. Progress and prospects of shale gas exploration and development in China. Acta Petrolei Sinica, 2012, 33(Suppl 1):107-114. [4] 金之钧, 胡宗全, 高波, 等.川东南地区五峰组-龙马溪组页岩气富集与高产控制因素.地学前缘, 2016, 23(1):1-10. JIN Z J, HU Z Q, GAO B, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin. Earth Science Frontiers, 2016, 23(1):1-10. [5] 张金川, 霍志鹏, 唐玄, 等.中国页岩气地质.上海:华东理工大学出版社, 2016:26-27. ZHANG J C, HUO Z P, TANG X, et al. Shale gas geology in China. Shanghai:East China University of Science and Technology Press,2016:26-27. [6] 孟凡洋, 陈科, 包书景, 等.湘西北复杂构造区下寒武统页岩含气性及主控因素分析:以慈页1井为例.岩性油气藏, 2018, 30(5):29-39. MENG F Y, CHEN K, BAO S J, et al. Gas-bearing property and main controlling factors of Lower Cambrian shale in complex tectonic area of northwestern Hunan province:a case of well Ciye 1. Lithologic Reservoirs, 2018, 30(5):29-39. [7] TYSON R V, PEARSON T H. Modern and ancient continental shelf anoxia:an overview. Arctic & Alpine Research, 1991, 58(1):1-24. [8] PEDERSEN T F,CALVERT S E. Anoxia vs. productivity:What controls the formation of organic-carbon-rich sediments and sedimentary rocks? AAPG Bulletin, 1990, 74:454-466. [9] SAGEMAN B B, MURPHY A E, WERNE J P, et al. A tale of shales:the relative roles of production,decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian Basin. Chemical Geology, 2003, 195(1):229-273. [10] GALLEGO-TORRES D, MARTINEZ-RUIZ F, PAYTAN A, et al. Pliocene-Holocene evolution of depositional conditions in the eastern Mediterranean:Role of anoxia vs. productivity at time of sapropel deposition. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 246(2):424-439. [11] ARTHUR M A, SAGEMAN B B. Marine black shales:depositional mechanisms and environments of ancient deposits. Annual Review of Earth and Planetary Sciences, 1994, 22:499-551. [12] MORT H, JACQUAT O, ADATTE T, et al. The Cenomanian/Turonian anoxic event at the Bonarelli level in Italy and Spain:Enhanced productivity and/or better preservation? Cretaceous Research, 2007, 28(4):597-612. [13] 苏慧敏, 杨瑞东, 程伟, 等.贵州西南部下石炭统打屋坝组页岩气成藏特征与有利区分析.贵州大学学报(自然版), 2017, 34(3):41-46. SU H M, YANG R D, CHENG W, et al. Shale gas accumulation characteristics and advantageous area analysis of Lower Carboniferous Dawuba Formation in southwestern Guizhou. Journal of Guizhou University(Natural Sciences), 2017, 34(3):41-46. [14] 梅冥相, 马永生, 邓军, 等.滇黔桂盆地及其邻区石炭纪至二叠纪层序地层格架及三级海平面变化的全球对比. 中国地质, 2005, 32(1):13-24. MEI M X, MA Y S, DENG J, et al. Carboniferous to Permian sequence stratigraphic framework of the Yunnan-Guizhou-Guangxi basin and its adjacent areas and global correlation of third-order sea-level change. Geology in China, 2005, 32(1):13-24. [15] CHEN D, TUCKER M E. The Frasnian-Famennian mass extinction:Insights from high-resolution sequence stratigraphy and cyclostratigraphy in South China. Palaeogeography,Palaeoclimatology,Palaeoecology, 2003, 193(1):87-111. [16] 闫建平, 言语, 彭军, 等.天文地层学与旋回地层学的关系、研究进展及其意义.岩性油气藏, 2017, 29(1):147-156. YAN J P, YAN Y, PENG J, et al. The research progress, significance and relationship of astrostratigraphy with cyclostratigraphy. Lithologic Reservoirs, 2017, 29(1):147-156. [17] PI D H, LIU C Q, SHIELDS-ZHOU G A, et al. Trace and rare earth element geochemistry of black shale and kerogen in the early Cambrian Niutitang Formation in Guizhou province, South China:Constraints for redox environments and origin of metal enrichments. Precambrian Research, 2013, 225(1):218-229. [18] TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies:an update. Chemical Geology, 2006, 232(1/2):12-32. [19] WEDEPOHL K H. Environmental influences on the chemical composition of shales and clays. Physics & Chemistry of the Earth, 1971, 8(71):305-333. [20] TAYLOR S R, MCLENNAN S M. The continental crust:Its composition and evolution. London:Blackwell Scientific Publications, 1985:312. [21] CAO J, YANG R, YIN W, et al. Mechanism of organic matter accumulation in residual bay environments:the Early Cretaceous Qiangtang Basin,Tibet. Energy & Fuels, 2018, 32(2):1024-1037. [22] SPEARS D A, ZHENG Y. Geochemistry and origin of elements in some UK coals. International Journal of Coal Geology, 1999, 38(3-4):161-179. [23] FU X G, WANG J, ZENG Y H, et al. Geochemistry and origin of rare earth elements(REEs)in the Shengli River oil shale, northern Tibet, China. Chemie der Erde-Geochemistry, 2011, 71(1):21-30. [24] WANG Z, FU X, FENG X, et al. Geochemical features of the black shales from the Wuyu Basin, Southern Tibet:Implications for palaeoenvironment and palaeoclimate. Geological Journal, 2017, 52(2):282-297. [25] LYONS T W, WERNE J P, HOLLANDER D J, et al. Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela. Chemical Geology, 2003, 195(1/4):131-157. [26] ROSS D J K, BUSTIN R M. Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata:Examples from the DevonianMississippian shales,Western Canadian Sedimentary Basin. Chemical Geology, 2009, 260(1/2):1-19. [27] MORFORD J L, EMERSON S. The geochemistry of redox sensitive trace metals in sediments. Geochimica et Cosmochimica Acta, 1999, 63:1735-1750. [28] CALVERT S E, PEDERSEN T F. Geochemistry of recent oxic and anoxic marine sediments:Implications for the geological record. Marine Geology, 1993, 113(1/2):67-88. [29] HATCH J R, LEVENTHAL J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian(Missourian)Stark shale member of the Dennis limestone, Wabaunsee county, Kansas, U. S. A. Chemical Geology, 1992, 99(1/3):65-82. [30] JONES B, MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 1994, 111(111):111-129. [31] 李兴, 张立强, 施辉, 等.准噶尔盆地玛湖凹陷百口泉组沉积古环境分析:以玛18井为例.岩性油气藏, 2016, 28(2):80-85. LI X, ZHANG L Q, SHI H, et al. Sedimentary environment of Lower Triassic Baikouquan Formation in Mahu Sag, Junggar Basin:a case study from Ma 18 well. Lithologic Reservoirs, 2016, 28(2):80-85. [32] 黄成刚, 常海燕, 崔俊, 等.柴达木盆地西部地区渐新世沉积特征与油气成藏模式.石油学报, 2017, 38(11):1230-1243. HUANG C G, CHANG H Y, CUI J, et al. Sedimentary characteristics and hydrocarbon accumulation model of Oligocene reservoirs in the western Qaidam Basin. Acta Petrolei Sinica, 2017, 38(11):1230-1243. [33] 韦恒叶.古海洋生产力与氧化-还原指标:元素地球化学综述. 沉积与特提斯地质, 2012, 32(2):76-88. WEI H Y. Productivity and redox proxies of palaeo-oceans:an overview of elementary geochemistry. Sedimentary Geology and Tethyan Geology, 2012, 32(2):76-88. [34] ALGEO T J, TRIBOVILLARD N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chemical Geology, 2009, 268(3-4):211-225. [35] 徐祖新, 韩淑敏, 王启超.中扬子地区陡山沱组页岩储层中黄铁矿特征及其油气意义.岩性油气藏, 2015, 27(2):31-37. XU Z X, HAN S M, WANG Q C. Characteristics of pyrite and its hydrocarbon significance of shale reservoir of Doushantuo Formation in Middle Yangtze area. Lithologic Reservoirs, 2015, 27(2):31-37. [36] WILKIN R T, BARNES H L. Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta, 1997, 61(2):323-339. [37] WEI H, CHEN D, WANG J, et al. Organic accumulation in the lower Chihsia Formation(Middle Permian)of South China:Constraints from pyrite morphology and multiple geochemical proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 353-355(3):73-86. [38] 杨瑞东, 颜承锡, 汪成元, 等. 贵州石炭纪遗迹化石:兼论Zoophycos在地史时期的古地理分布. 贵州地质, 1995, 12(4):290-297. YANG R D, YAN C X, WANG C Y, et al. The Carboniferous trace fossils in Guizhou:Discussion on distribution of Zoophycos throughout geological history. Guizhou Geology, 1995, 12(4):290-297. [39] DYMOND J, SUESS E, LYLE M. Barium in deep-sea sediment:a geochemical proxy for paleoproductivity. Paleoceanography, 1992, 7(2):163-181. [40] FRANCOIS R, HONJO S, MANGANINI S J, et al. Biogenic barium fluxes to the deep sea:Implications for paleoproductivity reconstruction. Global Biogeochemical Cycles, 1995, 9(2):289-303. [41] YAN D, WANG H, FU Q, et al. Geochemical characteristics in the Longmaxi Formation(Early Silurian)of South China:Implications for organic matter accumulation. Marine and Petroleum Geology, 2015, 65:290-301. [42] ALGEO T J, LYONS T W. Mo-total organic carbon covariation in modern anoxic marine environments:implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography, 2006, 21(1):PA1016. |
[1] | BAI Yubin, LI Mengyao, ZHU Tao, ZHAO Jingzhou, REN Haijiao, WU Weitao, WU Heyuan. Geochemical characteristics of source rocks and evaluation of shale oil “sweet spot”of Permian Fengcheng Formation in Mahu Sag [J]. Lithologic Reservoirs, 2024, 36(6): 110-121. |
[2] | HONG Zhibin, WU Jia, FANG Peng, YU Jinyang, WU Zhengyu, YU Jiaqi. Heterogeneity of soluble organic matter in shale and occurrence state of shale oil under nanoconfinement [J]. Lithologic Reservoirs, 2024, 36(6): 160-168. |
[3] | YANG Haibo, FENG Dehao, YANG Xiaoyi, GUO Wenjian, HAN Yang, SU Jiajia, YANG Huang, LIU Chenglin. Characteristics of source rocks and thermal evolution simulation of Permian Pingdiquan Formation in Dongdaohaizi Sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(5): 156-166. |
[4] | ZHU Biao, ZOU Niuniu, ZHANG Daquan, DU Wei, CHEN Yi. Characteristics of shale pore structure and its oil and gas geological significance of Lower Cambrian Niutitang Formation in Fenggang area,northern Guizhou [J]. Lithologic Reservoirs, 2024, 36(4): 147-158. |
[5] | CHENG Jing, YAN Jianping, SONG Dongjiang, LIAO Maojie, GUO Wei, DING Minghai, LUO Guangdong, LIU Yanmei. Low resistivity response characteristics and main controlling factors of shale gas reservoirs of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Changning area,southern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(3): 31-39. |
[6] | GUO Jinhao, HU Guoyi, HE Kun, MI Jingkui, TIAN Lianjie, HE Fei, GUO Chuyuan, LU Mengdie. Geochemical characteristics and sedimentary environment of source rocks of Permian Dalong Formation in northern Sichuan Basin [J]. Lithologic Reservoirs, 2023, 35(5): 139-152. |
[7] | LIU Hailei, ZHU Yongcai, LIU Longsong, YIN He, WANG Xueyong, DU Xiaodi. Geological characteristics and exploration potential of shale oil of Permian Lucaogou Formation in hanging wall of Fukang fault zone, Junggar Basin [J]. Lithologic Reservoirs, 2023, 35(4): 90-101. |
[8] | DU Jiangmin, LIU Boyuan, ZHANG Yi, JIA Zhiwei, FU Jiyou, LONG Pengyu, LUO Jinyang, SHENG Jun. Characteristics and accumulation model of typical dolomite reservoirs in China [J]. Lithologic Reservoirs, 2023, 35(3): 86-98. |
[9] | LUO Jinchang, TIAN Jijun, MA Jinghui, YAN Jiaqi, LIANG Yafei, HU Zhuohao. Sedimentary environment and organic matter enrichment mechanism of Permian Lucaogou Formation in Jiye-1 well area,Jimsar Sag [J]. Lithologic Reservoirs, 2022, 34(5): 73-85. |
[10] | HE Yu, ZHOU Xing, LI Shaoxuan, DING Hongbo. Genesis and logging response characteristics of formation overpressure of Paleogene in Bozhong Sag,Bohai Bay Basin [J]. Lithologic Reservoirs, 2022, 34(3): 60-69. |
[11] | XIAO Wei, ZHANG Bing, YAO Yongjun, WANG Yan, YANG Hongyu, YANG Kai. Lithofacies and sedimentary environment of shale of Permian Longtan Formation in eastern Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(2): 152-162. |
[12] | WANG Pengfei, JIN Can, ZANG Xiaopeng, TIAN Qianning, LIU Guo, CUI Wenjuan. Development characteristics and evolution of organic matter pores of marine shale in southeastern Chongqing [J]. Lithologic Reservoirs, 2020, 32(5): 46-53. |
[13] | GAO Qiao, WANG Xingzhi, ZHU Yiqing, ZHAO Shengxian, ZHANG Rui, XIAO Zheyu. Elemental geochemical characteristics and main controlling factors of organic matter enrichment of Longmaxi Formation in southern Sichuan [J]. Lithologic Reservoirs, 2019, 31(4): 72-84. |
[14] | ZHENG Shanshan, LIU Luofu, WANG Yang, LUO Zehua, WANG Ximeng, SHENG Yue, XU Tong, WANG Bohan. Characteristics of microscopic pore structures and main controlling factors of Wufeng-Longmaxi Formation shale in southern Sichuan Basin [J]. Lithologic Reservoirs, 2019, 31(3): 55-65. |
[15] | LI Sen, ZHU Rukai, CUI Jingwei, LIU Han. Paleoenvironment and controlling factors of organic matter enrichment: a case of Chang 7 oil reservoir in southern margin of Ordos Basin [J]. Lithologic Reservoirs, 2019, 31(1): 87-95. |
|