Lithologic Reservoirs ›› 2022, Vol. 34 ›› Issue (3): 60-69.doi: 10.12108/yxyqc.20220306

• PETROLEUM EXPLORATION • Previous Articles     Next Articles

Genesis and logging response characteristics of formation overpressure of Paleogene in Bozhong Sag,Bohai Bay Basin

HE Yu, ZHOU Xing, LI Shaoxuan, DING Hongbo   

  1. Tianjin Branch of CNOOC Ltd., Tianjin 300452, China
  • Received:2021-07-29 Revised:2021-09-05 Online:2022-05-01 Published:2022-05-12

Abstract: Based on pressure measurement and logging data of Paleogene in Bozhong Sag,Bohai Bay Basin, the formation pressure curves of the whole well section were established,and the vertical overpressure zones were divided. The genesis and types of overpressure were analyzed by the consideration of vertical effective stress-velocity cross plot,source rock development and vitrinite reflectance,and the method for identifying overpressure was improved. The results show that: (1)Abnormal overpressure developed in the lower second member of Dongying Formation and the third member of Shahejie Formation of Paleogene in Bozhong Sag. The genesis of overpressure is mainly undercompaction,hydrocarbon generation of organic matter and fluid conduction, with the aging of the strata,the overpressure genesis changes from undercompaction to non-undercompaction such as hydrocarbon generation of organic matter and fluid conduction.(2)The overpressure caused by undercompaction generally corresponds to thick mudstone section,with little change of acoustic velocity,low rock density and stable vertical effective stress. The overpressure caused by hydrocarbon generation of organic matter corresponds to the strata with acoustic velocity being lower than that of normal compacted strata,but it increases slightly with the increase of depth,and the vertical effective stress is low. The overpressure caused by fluid conduction generally occurs in overpressure fluid compartments without the conditions for self-source overpressure generation,the acoustic velocity and rock density show normal compaction trend,and the measured pressure increases linearly with depth in the longitudinal direction, showing the same pressure system.

Key words: undercompaction overpressure, overpressure caused by hydrocarbon generation of organic matter, fluid conduction overpressure, genesis of formation overpressure, logging response characteristics, Paleogene, Bozhong Sag, Bohai Bay Basin

CLC Number: 

  • TE122
[1] 马启富,陈斯忠,张启明,等.超压盆地与油气分布[M].北京:地质出版社, 2000:1-24. MA Qifu, CHEN Sizhong, ZHANG Qiming, et al. Oil and gas distribution in overpressured basins[M]. Beijing:Geological Publishing House, 2000:1-24.
[2] 朱伟林,米立军.中国海域含油气盆地图集[M].北京:石油工业出版社, 2010:24-25. ZHU Weilin, MI Lijun. Atlas of oil and gas basin, China sea[M]. Beijing:Petroleum Industry Press, 2010:24-25.
[3] 沈章洪.渤海油田古近系超压成因分类及分布特征[J].中国海上油气, 2016, 28(3):31-36. SHEN Zhanghong. Genetic classification and distribution characteristics of overpressure in the Paleogene of Bohai oilfields[J]. China Offshore Oil and Gas, 2016, 28(3):31-36.
[4] 石良,金振奎,闫伟,等.异常高压对储集层压实和胶结作用的影响:以渤海湾盆地渤中凹陷西北次凹为例[J].石油勘探与开发, 2015, 42(3):310-318. SHI Liang, JIN Zhenkui, YAN Wei, et al. Influence of overpressure on reservoir compaction and cementation:A case from northwestern sub sag, Bozhong Sag,Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2015, 42(3):310-318.
[5] 郝芳,蔡东升,邹华耀,等.渤中坳陷超压-构造活动联控型流体流动与油气快速成藏[J].地球科学——中国地质大学学报, 2004, 29(5):518-524. HAO Fang, CAI Dongsheng, ZOU Huayao, et al. Overpressuretectonic activity controlled fluid flow and rapid petroleum accumulation in Bozhong Depression,Bohai Bay Basin[J]. Earth Science-Journal of China University of Geosciences, 2004, 29(5):518-524.
[6] PETER V R, RICHARD H, PETER T. The origin of overpressure in the Carnarvon Basin, western Australia:Implications for pore pressure prediction[J]. Petroleum Geoscience,2004,10(3):247-257.
[7] TANG Longxiang, LU Jungang, YANG Mingyi, et al. Identification of overpressures resulting from undercompaction and hydrocarbon generation in shale-dominated settings using well-log data[J]. Interpretation, 2022, 2:141-148.
[8] WEBSTER M. Overpressures in the Taranaki Basin:Distribution, causes and implications for exploration[J]. AAPG Bulletin, 2011, 95(3):339-370.
[9] LUO Xiaorong, WANG Zhaoming, LIU Luojun. Overpressure generation and evolution in a compressional tectonic setting, the southern margin of Junggar Basin, northwestern China[J]. AAPG Bulletin, 2007, 95(10):1123-1139.
[10] VERNIK L,DE NEWTON P V. Pore pressure prediction in organic shales[J].The Leading Edge, 2022, 3:172-175.
[11] 杜晓峰,王清斌,庞小军,等.渤中凹陷石南陡坡带东三段源汇体系定量表征[J].岩性油气藏, 2018, 30(5):1-10. DU Xiaofeng, WANG Qingbin, PANG Xiaojun, et al. Quantitative characterization of source-sink system of Ed3 in Shinan steep slope zone,Bozhong Depression[J]. Lithologic Reservoirs, 2018, 30(5):1-10.
[12] 王洪亮,邓宏文.渤海湾盆地第三系层序地层特征与大中型气田分布[J].中国海上油气(地质), 2000, 14(2):100-103. WANG Hongliang, DENG Hongwen. Tertiary sequence stratigraphy and major gas fields in Bohai Bay Basin[J]. China Offshore Oil and Gas (Geology), 2000, 14(2):100-103.
[13] 杜栩,郑洪印,焦秀琼.异常压力与油气分布[J].地学前缘, 1995, 2(4):137-148. DU Xu, ZHENG Hongyin, JIAO Xiuqiong. Abnormal pressure and hydrocarbon accumulation[J]. Earth Science Frontiers, 1995, 2(4):137-148.
[14] 罗晓容,杨计海,王振峰.盆地内渗透性地层超压形成机制及钻前压力预测[J].地质论评, 2000, 46(1):22-30. LUO Xiaorong, YANG Jihai, WANG Zhenfeng. The overpressuring mechanisms in aquifers and pressure prediction in Basins[J]. Geological Review, 2000, 46(1):22-30.
[15] 郭小文,何生,宋国奇,等.东营凹陷生油增压成因证据[J].地球科学——中国地质大学学报, 2011, 36(6):1085-1094. GUO Xiaowen, HE Sheng, SONG Guoqi, et al. Evidences of overpressure caused by oil generation in Dongying Depression[J]. Earth Science-Journal of China University of Geosciences, 2011, 36(6):1085-1094.
[16] 刘晓峰.超压传递:概念和方式[J].石油实验地质, 2002, 24(6):533-536. LIU Xiaofeng. Overpressure transference:Concept and ways[J]. Petroleum Geology&Experiment, 2002, 24(6):533-536.
[17] 刘晓峰,解习农.储层超压流体系统的成因机制[J].地质科技情报, 2003, 22(3):55-60. LIU Xiaofeng, XIE Xinong. Review on formation mechanism of the reservoir overpressure fluid system[J]. Geological Science and Technology Information, 2003, 22(3):55-60.
[18] TINGAY M R P. Origin of overpressure and pore-pressure prediction in the Baram province, Brunei[J]. AAPG Bulletin, 2009, 93(1):51-74.
[19] RAMDHAN A M, GOULTY N R. Overpressure-generating mechanisms in the Peciko Field, Lower Kutai Basin, Indonesia[J]. Petroleum Geoscience, 2010, 16(4):367-376.
[20] 王志宏,郝翠果,李建明,等.川西前陆盆地超压分布及成因机制[J].岩性油气藏, 2019, 31(6):36-43. WANG Zhihong, HAO Cuiguo, LI Jianming, et al. Distribution and genetic mechanism of overpressure in western Sichuan foreland basin[J]. Lithologic Reservoirs, 2019, 31(6):36-43.
[21] TERZAGHI K. Die Berechnung der Durchlässigkeit des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen[J]. Akademie der Wissenschaften in Wien, 1923, 132(3/4):125-138.
[22] BOWERS G L. Pore pressure estimation from velocity data:Accounting for overpressure mechanisms besides undercompaction[R]. Dallas:Proceedings of The IADC/SPE Drilling Conference, 1994.
[23] BOWERS G L. Detecting high overpressure[J]. The Leading Edge, 2002, 21(2):174-177.
[24] 薛永安,王飞龙,汤国民,等.渤海海域页岩油气地质条件与勘探前景[J].石油与天然气地质, 2020, 41(4):696-709. XUE Yong'an, WANG Feilong, TANG Guomin, et al. Geological condition and exploration prospect of shale oil and gas in the Bohai Sea[J]. Oil&Gas Geology, 2020, 41(4):696-709.
[25] 谢玉洪,张功成,沈朴,等.渤海湾盆地渤中凹陷大气田形成条件与勘探方向[J].石油学报, 2018, 39(11):1199-1210. XIE Yuhong, ZHANG Gongcheng, SHEN Pu, et al. Formation conditions and exploration direction of large gas field in Bozhong Sag of Bohai Bay Basin[J]. Acta Petrolei Sinica, 2018, 39(11):1199-1210.
[26] 姜雪,刘丽芳,孙和风,等.气候与构造控制下湖相优质烃源岩的差异分布:以渤中凹陷为例[J].石油学报, 2019, 40(2):165-175. JIANG Xue, LIU Lifang, SUN Hefeng, et al. Differential distribution of high quality lacustrine source rocks controlled by climate and tectonics:A case study from Bozhong Sag[J]. Acta Petrolei Sinica, 2019, 40(2):165-175.
[27] 庞小军,代黎明,王清斌,等.渤中凹陷西北缘东三段低渗透储层特征及控制因素[J].岩性油气藏, 2017, 29(5):76-88. PANG Xiaojun, DAI Liming, WANG Qingbin, et al. Characteristics and controlling factors of low permeability reservoirs of the third member of Dongying Formation in northwestern margin of Bozhong Sag[J]. Lithologic Reservoirs, 2017, 29(5):76-88.
[28] 吴磊,徐怀民,季汉成.渤海湾盆地渤中凹陷古近系沉积体系演化及物源分析[J].海洋地质与第四纪地质, 2006, 26(1):81-87. WU Lei, XU Huaimin, JI Hancheng. Evolution of sedimentary system and analysis of sedimentary source in Paleogene of Bozhong Sag, Bohai Bay[J]. Marine Geology&Quaternary Geology, 2006, 26(1):81-87.
[29] 杜雨佳.渤中凹陷古近系烃源岩生烃潜力评价[D].青岛:中国石油大学(华东), 2015. DU Yujia. Hydrocarbon generation potential of Paleogene source rocks in Bozhong Depression[D]. Qingdao:China University of Petroleum (East China), 2015.
[30] 刘晓峰,解习农,张成.渤海湾盆地渤中坳陷储层超压特征与成因机制[J].地球科学——中国地质大学学报, 2008, 33(3):337-341. LIU Xiaofeng, XIE Xinong, ZHANG Cheng. Characteristics and generation of the reservoir overpressure in Bozhong Depression, Bohai Bay Basin[J]. Earth Science-Journal of China University of Geosciences, 2008, 33(3):337-341.
[31] 蒋有录,王鑫,于倩倩,等.渤海湾盆地含油气凹陷压力场特征及与油气富集关系[J].石油学报, 2016, 37(11):1361-1369. JIANG Youlu, WANG Xin, YU Qianqian, et al. Pressure field characteristics of petroliferous depressions and its relationship with hydrocarbon enrichment in Bohai Bay Basin[J]. Acta Petrolei Sinica, 2016, 37(11):1361-1369.
[32] 樊建华,李瑞娟,赵清平.基于地震的地层压力预测在渤中凹陷西南地区的应用[J].工程地球物理学报, 2015, 12(5):571-575. FAN Jianhua, LI Ruijuan, ZHAO Qingping. The application of seismic formation pressure prediction to southwest area of Bozhong Depression[J]. Chinese Journal of Engineering Geophysics, 2015, 12(5):571-575.
[33] 王德英,于娅,张藜,等.渤海海域石臼坨凸起大型岩性油气藏成藏关键要素[J].岩性油气藏, 2020, 32(1):1-10. WANG Deying, YU Ya, ZHANG Li, et al. Key factors for reservoir formation of large lithologic reservoirs in Shijiutuo uplift, Bohai Sea[J]. Lithologic Reservoirs, 2020, 32(1):1-10.
[1] CHENG Yan, WANG Bo, ZHANG Tongyao, QI Yumin, YANG Jilei, HAO Peng, LI Kuo, WANG Xiaodong. Oil and gas migration characteristics of lithologic reservoirs of Neogene Minghuazhen Formation in Bozhong A-2 area,Bozhong Sag [J]. Lithologic Reservoirs, 2024, 36(5): 46-55.
[2] ZHOU Ziqiang, ZHU Zhengping, PAN Renfang, DONG Yu, JIN Jineng. Simulation and prediction of tight sandstone reservoirs based on waveform facies-controlled inversion:A case study from the second member of Paleogene Kongdian Formation in southern Cangdong sag, Huanghua Depression [J]. Lithologic Reservoirs, 2024, 36(5): 77-86.
[3] ZHANG Lei, LI Sha, LUO Bobo, LYU Boqiang, XIE Min, CHEN Xinping, CHEN Dongxia, DENG Caiyun. Accumulation mechanism of overpressured lithologic reservoirs of the third member of Paleogene Shahejie Formation in northern Dongpu Sag [J]. Lithologic Reservoirs, 2024, 36(4): 57-70.
[4] ZHU Kangle, GAO Gang, YANG Guangda, ZHANG Dongwei, ZHANG Lili, ZHU Yixiu, LI Jing. Characteristics of deep source rocks and hydrocarbon accumulation model of Paleogene Shahejie Form ationin Qingshui subsag,Liaohe Depression [J]. Lithologic Reservoirs, 2024, 36(3): 146-157.
[5] XI Zhibo, LIAO Jianping, GAO Rongjin, ZHOU Xiaolong, LEI Wenwen. Tectonic evolution and hydrocarbon accumulation in northern Chenjia fault zone,Liaohe Depression [J]. Lithologic Reservoirs, 2024, 36(3): 127-136.
[6] FENG Bin, HUANG Xiaobo, HE Youbin, LI Hua, LUO Jinxiong, LI Tao, ZHOU Xiaoguang. Reconstruction of source-to-sink system of the third member of Paleogene Shahejie Formation in Miaoxibei area,Bohai Bay Basin [J]. Lithologic Reservoirs, 2024, 36(3): 84-95.
[7] FANG Xuqing, ZHONG Qi, ZHANG Jianguo, LI Junliang, MENG Tao, JIANG Zaixing, ZHAO Haibo. Cyclostratigraphy analysis and stratigraphic division of lower Sha-3 member of Paleogene in Zhanhua Sag,Bohai Bay Basin [J]. Lithologic Reservoirs, 2024, 36(3): 19-30.
[8] LIU Renjing, LU Wenming. Mechanism and field practice of enhanced oil recovery by injection-production coupling in fault block reservoirs [J]. Lithologic Reservoirs, 2024, 36(3): 180-188.
[9] WANG Ya, LIU Zongbin, LU Yan, WANG Yongping, LIU Chao. Flow unit division based on SSOM and its production application: A case study of sublacustrine turbidity channels of middle Es3 in F oilfield,Bohai Bay Basin [J]. Lithologic Reservoirs, 2024, 36(2): 160-169.
[10] NIU Chengmin, HUI Guanzhou, DU Xiaofeng, GUAN Dayong, WANG Bingjie, WANG Qiming, ZHANG Hongguo. Sedimentary model of sublacustrine fan of the third member of Paleogene Dongying Formation and large-scale oilfield discovered in western slope of Liaozhong Sag [J]. Lithologic Reservoirs, 2024, 36(2): 33-42.
[11] LI Shengqian, ZENG Jianhui, LIU Yazhou, LI Miao, JIAO Panpan. Reservoir diagenesis and pore evolution of Paleogene Pinghu Formation in Kongqueting area of Xihu Sag,East China Sea Basin [J]. Lithologic Reservoirs, 2023, 35(5): 49-61.
[12] HU Wangshui, GAO Feiyue, LI Ming, GUO Zhijie, WANG Shichao, LI Xiangming, LI Shengming, JIE Qiong. Fine characterization of reservoir units of Paleogene Shahejie Formation in Langgu Sag,Bohai Bay Basin [J]. Lithologic Reservoirs, 2023, 35(5): 92-99.
[13] YAO Xiutian, WANG Chao, YAN Sen, WANG Mingpeng, LI Wan. Fine characterization of Cenozoic faults and its geological implications in Zhanhua Sag,Bohai Bay Basin [J]. Lithologic Reservoirs, 2023, 35(4): 50-60.
[14] ZHANG Zhenhua, ZHANG Xiaojun, ZHONG Dakang, GOU Yingchun, ZHANG Shiming. Reservoir characteristics and main controlling factors of upper member of Paleogene Xiaganchaigou Formation in Nanyishan area, northwestern Qaidam Basin [J]. Lithologic Reservoirs, 2023, 35(3): 29-39.
[15] ZENG Xu, BIAN Congsheng, SHEN Rui, ZHOU Kejia, LIU Wei, ZHOU Suyan, WANG Xiaoluan. Nonlinear seepage characteristics of shale oil reservoirs of the third member of Paleogene Shahejie Formation in Qikou Sag,Bohai Bay Basin [J]. Lithologic Reservoirs, 2023, 35(3): 40-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Qinlian, ZHENG Rongcai, XIAO Ling,WANG Chengyu, NIU Xiaobing. Influencing factors and characteristics of Chang 6 reservoir in Wuqi area, Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(4): 45 -50 .
[2] WANG Dongqi, YIN Daiyin. Empirical formulas of relative permeability curve of water drive reservoirs[J]. Lithologic Reservoirs, 2017, 29(3): 159 -164 .
[3] LI Yun, SHI Zhiqiang. Study on fluid inclusion of tight sandstone reservoir of Upper Triassic Xujiahe Formation in central Sichuan Basin[J]. Lithologic Reservoirs, 2008, 20(1): 27 -32 .
[4] JIANG Ren, FAN Tailiang, XU Shouli. Concept and techniques of seismic geomorphology[J]. Lithologic Reservoirs, 2008, 20(1): 33 -38 .
[5] ZOU Mingliang, HUANG Sijing, HU Zuowei, FENG Wenli, LIU Haoniannian. The origin of carbonate cements and the influence on reservoir quality of Pinghu Formation in Xihu Sag, East China Sea[J]. Lithologic Reservoirs, 2008, 20(1): 47 -52 .
[6] WANG Bingjie, HE Sheng, NI June, FANG Du. Activity analysis of main faults in Qianquan area, Banqiao Sag[J]. Lithologic Reservoirs, 2008, 20(1): 75 -82 .
[7] CHEN Zhenbiao, ZHANG Chaomo, ZHANG Zhansong, LING Husong, SUN Baodian. Using NMR T2 spectrum distribution to study fractal nature of pore structure[J]. Lithologic Reservoirs, 2008, 20(1): 105 -110 .
[8] ZHANG Houfu, XU Zhaohui. Discussion on stratigraphic-lithologic reservoirs exploration in the aspect of the research history of reservoirs[J]. Lithologic Reservoirs, 2008, 20(1): 114 -123 .
[9] ZHANG Xia. Cultivation of exploration creativity[J]. Lithologic Reservoirs, 2007, 19(1): 16 -20 .
[10] YANG Wuyang, YANG Wencai, LIU Quanxin, WANG Xiwen. 3D frequency and space domain amplitude-preserved migration with viscoelastic wave equations[J]. Lithologic Reservoirs, 2007, 19(1): 86 -91 .
TRENDMD: