Lithologic Reservoirs ›› 2023, Vol. 35 ›› Issue (5): 62-70.doi: 10.12108/yxyqc.20230506

• PETROLEUM EXPLORATION • Previous Articles     Next Articles

Development characteristics and significance of fracture veins of Lower Cambrian Qiongzhusi Formation in Wangcang area at Micang Mountain front, Sichuan Basin

WEI Quanchao1, LI Xiaojia2, LI Feng2, HAO Jingyu1, DENG Shuanglin2, WU Juan2, DENG Bin2, WANG Daojun1   

  1. 1. Exploration Company of Sinopec, Chengdu 610059, China;
    2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China
  • Received:2022-10-25 Revised:2022-11-13 Online:2023-09-01 Published:2023-09-28

Abstract: Through thin section observation,fluid inclusion analysis,rock geochemical testing and basin numerical simulation,the development characteristics of veins of Lower Cambrian Qiongzhusi Formation in Wangcang area at Micang Mountain front,Sichuan Basin,were studied,and the fluid activity stages and fluid properties in the sedimentary period were distinguished. The results show that: (1)There are two stages of calcite veins and one stage of quartz veins developed in Qiongzhusi Formation in Wangcang area,and the quartz veins were formed later than the calcite veins. The first stage of calcite veins was formed in the Early Silurian,and the vein forming fluids were mainly inner formation water,which were affected by a small amount of atmospheric fresh water and seawater,and filled veins together with liquid hydrocarbon fluids. The homogenization temperature ranged from 83.1 ℃ to 136.2 ℃,and the salinity was 0.4%-12.2%. The second stage of calcite veins was formed in the Early Jurassic. The vein forming fluids were inner formation water,which filled calcite veins together with liquid hydrocarbon and high density methane in gas phase. The homogenization temperature ranged from 140.2 ℃ to 185.4 ℃, and the salinity was 5.7%-17.3%. The quartz veins were formed in the Early Cretaceous,and the vein forming fluids were siliceous fluids in Qiongzhusi Formation,which filled the quartz veins with methane. The homogenization temperature was 162.1 ℃,and the salinity was 13.8%.(2)The δ18OPDB values of calcite vein samples from Qiongzhusi Formation in the study area range from -14.95‰ to -9.17‰,and the measured average δ18OPDB value of most calcite veins is smaller than that of global seawater of the Early Cambrian. The negative migration characteristics are controlled by temperature and δ18O abundance of the vein forming fluids. Rare earth elements are enriched in calcite veins and wall rocks,both of which have Eu positive anomaly and Ce no anomaly,and the fluids came from inner formation water.(3)Qiongzhusi Formation in the study area was affected less by external fluids, and the development of joints and fractures did not connect with the upper and lower strata,which was conducive to the accumulation and closed preservation of shale gas in Qiongzhusi Formation in the piedmont zones.

Key words: shale gas, calcite vein, quartz vein, fluid activity, fluid inclusion, closed condition, Qiongzhusi Formation, Lower Cambrian, Wangcang area, Micang Mountain front, Sichuan Basin

CLC Number: 

  • TE122.2
[1] 柳卓,郝芳,刘鑫,等.川南宁西地区龙一段高密度甲烷包裹体发育特征及地质意义[J].地球科学, 2021, 46(9):3157-3171. LIU Zhuo, HAO Fang, LIU Xin, et al. Development characteristics and geological significance of high density methane inclusions in the Longmaxi member Ⅰ in the Ningxi area, southern Sichuan Basin[J]. Earth Science, 2021, 46(9):3157-3171.
[2] 李文.涪陵与宜昌地区海相页岩裂缝脉体成因及流体包裹体古温压特征[D].武汉:中国地质大学(武汉), 2018. LI Wen. Origin of fracture veins of marine shale in Fuling and Yichang areas and characteristics of paleotemperature and pressure of fluid inclusions[D]. Wuhan:China University of Geosciences (Wuhan), 2018.
[3] 董敏,郭伟,张林炎,等.川南泸州地区五峰组—龙马溪组古构造应力场及裂缝特征[J].岩性油气藏, 2022, 34(1):43-51. DONG Min, GUO Wei, ZHANG Linyan, et al. Characteristics of paleotectonic stress field and fractures of Wufeng-Longmaxi Formation in Luzhou area, southern Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(1):43-51.
[4] 邱华宁,吴河勇,冯子辉,等.油气成藏40Ar-39Ar定年难题与可行性分析[J].地球化学, 2009, 38(4):405-411. QIU Huaning, WU Heyong, FENG Zihui, et al. The puzzledom and feasibility in determining emplacement ages of oil/gas reservoirs by 40Ar-39Ar techniques[J]. Geochimica, 2009, 38(4):405-411.
[5] 刘昭茜,梅廉夫,邱华宁,等.中扬子地块南缘半坑古油藏成藏期及破坏期的40Ar/39Ar年代学约束[J].科学通报, 2011, 56(33):2782-2790. LIU Zhaoqian, MEI Lianfu, QIU Huaning, et al. 40Ar-39Ar geochronology constraints on hydrocarbon accumulation and destruction periods in the Bankeng paleo-reservoir in the southern margin of Middle Yangtze block[J]. Chinese Science Bulletin, 2011, 56(33):2782-2790.
[6] 刘恩涛,赵建新,潘松圻,等.盆地流体年代学研究新技术:方解石激光原位U-Pb定年法[J].地球科学, 2019, 44(3):698-712. LIU Entao, ZHAO Jianxin, PAN Songqi, et al. A new technology of basin fluid geochronology:In-situ U-Pb dating of calcite[J]. Earth Science, 2019, 44(3):698-712.
[7] 张敏强,黄思静,吴志轩,等.东海盆地丽水凹陷古近系储层砂岩中碳酸盐胶结物及形成机制[J].成都理工大学学报(自然科学版), 2007, 34(3):259-266. ZHANG Minqiang, HUANG Sijing, WU Zhixuan, et al. Carbonate cements and their formation mechanism in Paleogene sandstones of Lishui sag, East China Sea Basin[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2007, 34(3):259-266.
[8] 周政.长宁地区五峰组—龙马溪组页岩气富集特征研究[D].成都:成都理工大学, 2020. ZHOU Zheng. Enrichment laws of shale-gas in the WufengLongmaxi Formation, Changning area, southern Sichuan Basin[D]. Chengdu:Chengdu University of Technology, 2020.
[9] 赵彦彦,李三忠,李达,等.碳酸盐(岩)的稀土元素特征及其古环境指示意义[J].大地构造与成矿学, 2019, 43(1):141-167. ZHAO Yanyan, LI Sanzhong, LI Da, et al. Rare earth element geochemistry of carbonate and its paleoenvironmental implications[J]. Geotectonica et Metallogenia, 2019, 43(1):141-167.
[10] 高键.渝东地区五峰—龙马溪组页岩裂缝脉体古温压及古流体成因[D].武汉:中国地质大学(武汉), 2018. GAO Jian. Paleo-temperature and pressure and origin of paleofluid of fracture veins in the Wufeng-Longmaxi shales of Yudong area[D]. Wuhan:China University of Geosciences (Wuhan), 2018.
[11] 刘德汉,肖贤明,田辉,等.论川东北地区发现的高密度甲烷包裹体类型与油裂解气和页岩气勘探评价[J].地学前缘, 2013, 20(1):64-71. LIU Dehan, XIAO Xianming, TIAN Hui, et al. Multiple types of high density methane inclusions and their relationships with exploration and assessment of oil-cracked gas and shale gas discovered in NE Sichuan[J]. Earth Science Frontiers, 2013, 20(1):64-71.
[12] 潘占昆,刘冬冬,黄治鑫,等.川南地区泸州区块五峰组—龙马溪组页岩裂缝脉体中甲烷包裹体分析及古温压恢复[J].石油科学通报, 2019, 4(3):242-253. PAN Zhankun, LIU Dongdong, HUANG Zhixin, et al. Paleotemperature and paleopressure of methane inclusions in fracture cements from the Wufeng-Longmaxi shales in the Luzhou area, southern Sichuan Basin[J]. Petroleum Science Bulletin, 2019, 4(3):242-253.
[13] 高乔,王兴志,朱逸青,等.川南地区龙马溪组元素地球化学特征及有机质富集主控因素[J].岩性油气藏, 2019, 31(4):72-84. GAO Qiao, WANG Xingzhi, ZHU Yiqing, et al. Elemental geochemical characteristics and main controlling factors of organic matter enrichment of Longmaxi Formation in southern Sichuan[J]. Lithologic Reservoirs, 2019, 31(4):72-84.
[14] 黄金亮,邹才能,李建忠,等.川南下寒武统筇竹寺组页岩气形成条件及资源潜力[J].石油勘探与开发, 2012, 39(1):69-75. HUANG Jinliang, ZOU Caineng, LI Jianzhong, et al. Shale gas generation and potential of the Lower Cambrian Qiongzhusi Formation in southern Sichuan Basin, China[J]. Petroleum Exploration and Development, 2012, 39(1):69-75.
[15] 周文,徐浩,余谦,等.四川盆地及其周缘五峰组—龙马溪组与筇竹寺组页岩含气性差异及成因[J].岩性油气藏, 2016, 28(5):18-25. ZHOU Wen, XU Hao, YU Qian, et al. Shale gas-bearing property differences and their genesis between Wufeng-Longmaxi Formation and Qiongzhusi Formation in Sichuan Basin and surrounding areas[J]. Lithologic Reservoirs, 2016, 28(5):18-25.
[16] 苏奎,金振奎,杜宏宇,等.中上扬子地区早寒武世梅树村期岩相古地理[J].科技导报, 2009, 27(10):26-31. SU Kui, JIN Zhenkui, DU Hongyu, et al. Lithofacies palaeogeography of the Meishucun Age in the Middle and Upper Yangtze region[J]. Science & Technology Review, 2009, 27(10):26-31.
[17] 周学海.米仓山前缘震旦系灯影组油气前景探讨[D].成都:成都理工大学, 2015. ZHOU Xuehai. Oil-gas prospects discussion of Sinian Dengying Formation at frontal area of Micang Mountain[D]. Chengdu:Chengdu University of Technology, 2015.
[18] 李泽奇.川北米仓山构造及前缘地区震旦系灯影组深层—超深层储集层特征研究[D].成都:成都理工大学, 2017. LI Zeqi. Research on deep-ultra deep reservoir characteristics of Sinian Dengying Fm in Miangshan structures and front areas, northern Sichuan Basin[D]. Chengdu:Chengdu University of Technology, 2017.
[19] 孙东.米仓山构造带构造特征及中—新生代构造演化[D].成都:成都理工大学, 2011. SUN Dong. The structural character and Meso-Cenozoic evolution of Micang Mountain structural zone, northern Sichuan Basin, China[D]. Chengdu:Chengdu University of Technology, 2011.
[20] 牟传龙,梁薇,周恳恳,等.中上扬子地区早寒武世(纽芬兰世—第二世)岩相古地理[J].沉积与特提斯地质, 2012, 32(3):41-53. MOU Chuanlong, LIANG Wei, ZHOU Kenken, et al. Sedimentary facies and palaeogeography of the Middle-Upper Yangtze area during the Early Cambrian (Terreneuvian-Series 2)[J]. Sedimentary Geology and Tethyan Geology, 2012, 32(3):41-53.
[21] 闪晨晨.米仓山地区下寒武统牛蹄塘组页岩气成藏条件研究[D].西安:长安大学, 2020. SHAN Chenchen. Study on shale gas accumulation conditions of the Lower Cambrian Niutitang Formation in the Micangshan area[D]. Xi'an:Chang'an University, 2020.
[22] 刘安,周鹏,陈孝红,等.运用方解石脉包裹体和碳氧同位素评价页岩气保存条件:以中扬子地区寒武系为例[J].天然气工业, 2021, 41(2):47-55. LIU An, ZHOU Peng, CHEN Xiaohong, et al. Evaluation of shale gas preservation conditions using calcite vein inclusions and C/O isotopes:A case study on the Cambrian strata of Middle Yangtze area[J]. Natural Gas Industry, 2021, 41(2):47-55.
[23] 张鼐,田作基,冷莹莹,等.烃和烃类包裹体的拉曼特征[J].中国科学D辑:地球科学, 2007, 37(7):900-907. ZHANG Nai, TIAN Zuoji, LENG Yingying, et al. Raman characteristics of hydrocarbon and hydrocarbon inclusions[J]. Science China Series D:Earth Sciences, 2007, 37(7):900-907.
[24] VEIZER J, ALA D, AZMY K, et al. 87Sr/86Sr,δ13C and δ18O evolution of Phanerozoic seawater[J]. Chemical Geology, 1999, 161:59-88.
[25] O'NEIL J R, CLAYTON R N, MAYEDA T K. Oxygen isotope fractionation in divalent metal carbonates[J]. Journal of Chemical Physics, 1969, 51(12):5547-5558.
[26] 瞿永泽,徐林刚,毛景文,等.贵州铜仁地区南华系大塘坡组黑色页岩型菱锰矿碳、氧同位素特征及锰矿成矿作用[J].矿床地质, 2018, 37(1):50-66. JU Yongze, XU Lingang, MAO Jingwen, et al. Carbon and oxygen isotope characteristics and mineralization of black shale-hosted manganese carbonate of Datangpo Formation in Tongren, Guizhou province[J]. Mineral Deposits, 2018, 37(1):50-66.
[27] 李小佳,邓宾,刘树根,等.川南宁西地区五峰组—龙马溪组多期流体活动[J].岩性油气藏, 2021, 33(6):135-144. LI Xiaojia, DENG Bin, LIU Shugen, et al. Multi-stage fluid activity characteristics of Wufeng-Longmaxi Formation in Ningxi area, southern Sichuan Basin[J]. Lithologic Reservoirs, 2021, 33(6):135-144.
[28] BRETAN P, YIELDING G, JONES H. Using calibrated shale gouge ration to estimate hydrocarbon column heights[J]. AAPG Bulletin, 2003, 87:397-413.
[29] 杨兴业,何生,何治亮,等.京山地区方解石脉包裹体、同位素特征及古流体指示意义[J].中国石油大学学报(自然科学版), 2013, 37(1):19-26. YANG Xingye, HE Sheng, HE Zhiliang, et al. Characteristics and pale-fluid activity implications of fluid-inclusion and isotope of calcite veins in Jingshan area[J]. Journal of China University of Petroleum (Edition of Natural Science), 2013, 37(1):19-26.
[30] 罗涛,郭小文,舒志国,等.四川盆地焦石坝南部地区五峰组—龙马溪组裂缝脉体流体来源及形成时间[J].石油学报, 2021, 42(5):611-622. LUO Tao, GUO Xiaowen, SHU Zhiguo, et al. Fluid source and formation time of fracture veins of Wufeng Formation and Longmaxi Formation in the south of Jiaoshiba area, Sichuan Basin[J]. Acta Petrolei Sinica, 2021, 42(5):611-622.
[31] 高键,何生,何治亮,等.中扬子京山地区方解石脉成因及其对油气保存的指示意义[J].石油与天然气地质, 2014, 35(1):33-41. GAO Jian, HE Sheng, HE Zhiliang, et al. Genesis of calcite vein and its implication to petroleum preservation in Jingshan region, Mid-Yangtze[J]. Oil & Gas Geology, 2014, 35(1):33-41.
[32] LEE S G, LEE D H, KIMY Y, et al. Rare earth elements as indicators of groundwater environment changes in a fractured rock system:Evidence from fracture-filling calcite[J]. Applied Geochemistry, 2003, 18(1):135-143.
[33] 汪林波,韩登林,王晨晨,等.库车坳陷克深井区白垩系巴什基奇克组孔缝充填特征及流体来源[J].岩性油气藏, 2022, 34(3):49-59. WANG Linbo, HAN Denglin, WANG Chenchen, et al. Characteristics of pore-fracture filling and fluid source of Cretaceous Bashijiqike Formation in Keshen well block, Kuqa Depression[J]. Lithologic Reservoirs, 2022, 34(3):49-59.
[34] GAO Jian, HE Sheng, ZHAO Jianxin, et al. Geothermometry and geobarometry of overpressured Lower Paleozoic gas shales in the Jiaoshiba field, Central China:Insight from fluid inclusions in fracture cements[J]. Marine and Petroleum Geology, 2017, 83:124-139.
[35] 朱传庆,徐明,单竞男,等.利用古温标恢复四川盆地主要构造运动时期的剥蚀量[J].中国地质, 2009, 36(6):1268-1277. ZHU Chuanqing, XU Ming, SHAN Jingnan, et al. Quantifying the denudations of major tectonic events in Sichuan Basin:Constrained by the paleothermal records[J]. Geology in China, 2009, 36(6):1268-1277.
[36] 袁玉松,孙冬胜,李双建,等.四川盆地加里东期剥蚀量恢复[J].地质科学, 2013, 48(3):581-591. YUAN Yusong, SUN Dongsheng, LI Shuangjian, et al. Caledonian erosion thickness reconstruction in the Sichuan Basin[J]. Chinese Journal of Geology, 2013, 48(3):581-591.
[37] 黄涵宇,何登发,李英强,等.四川盆地东南部泸州古隆起的厘定及其成因机制[J].地学前缘, 2019, 26(1):102-120. HUANG Hanyu, HE Dengfa, LI Yingqiang, et al. Determination and formation mechanism of the Luzhou paleo-uplift in the southeastern Sichuan Basin[J]. Earth Science Frontiers, 2019, 26(1):102-120.
[1] YAN Xueying, SANG Qin, JIANG Yuqiang, FANG Rui, ZHOU Yadong, LIU Xue, LI Shun, YUAN Yongliang. Main controlling factors for the high yield of tight oil in the Jurassic Da’anzhai Section in the western area of Gongshanmiao, Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(6): 98-109.
[2] QIU Yuchao, LI Yading, WEN Long, LUO Bing, YAO Jun, XU Qiang, WEN Huaguo, TAN Xiucheng. Structural characteristics and hydrocarbon accumulation model of Cambrian Xixiangchi Formation in eastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 122-132.
[3] CHEN Kang, DAI Juncheng, WEI Wei, LIU Weifang, YAN Yuanyuan, XI Cheng, LYU Yan, YANG Guangguang. Lithofacies classification of tight sandstone based on Bayesian Facies-AVO attributes:A case study of the first member of Jurassic Shaximiao Formation in central Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 111-121.
[4] YANG Xuefeng, ZHAO Shengxian, LIU Yong, LIU Shaojun, XIA Ziqiang, XU Fei, FAN Cunhui, LI Yutong. Main controlling factors of shale gas enrichment of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Ningxi area,Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 99-110.
[5] YAN Jianping, LAI Siyu, GUO Wei, SHI Xuewen, LIAO Maojie, TANG Hongming, HU Qinhong, HUANG Yi. Research progress on casing deformation types and influencing factors in geological engineering of shale gas wells [J]. Lithologic Reservoirs, 2024, 36(5): 1-14.
[6] ZHOU Gang, YANG Dailin, SUN Yiting, YAN Wei, ZHANG Ya, WEN Huaguo, HE Yuan, LIU Sibing. Sedimentary filling process and petroleum geological significance of Cambrian Canglangpu Formation in Sichuan Basin and adjacent areas [J]. Lithologic Reservoirs, 2024, 36(5): 25-34.
[7] HUANG Xiangsheng, YAN Zhuoyu, ZHANG Dongfeng, HUANG Heting, LUO Chengfei. Characteristics of multi-phase thermal fluid activity and natural gas migration-accumulation of Cenozoic in No. 2 fault zone of Qiongdongnan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 67-76.
[8] ZHANG Xiaoli, WANG Xiaojuan, ZHANG Hang, CHEN Qin, GUAN Xu, ZHAO Zhengwang, WANG Changyong, TAN Yaojie. Reservoir characteristics and main controlling factors of Jurassic Shaximiao Formation in Wubaochang area,northeastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 87-98.
[9] BAO Hanyong, ZHAO Shuai, ZHANG Li, LIU Haotian. Exploration achievements and prospects for shale gas of Middle-Upper Permian in Hongxing area,eastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(4): 12-24.
[10] SHEN Youyi, WANG Kaifeng, TANG Shuheng, ZHANG Songhang, XI Zhaodong, YANG Xiaodong. Geological modeling and“sweet spot”prediction of Permian coal measures shale reservoirs in Yushe-Wuxiang block,Qinshui Basin [J]. Lithologic Reservoirs, 2024, 36(4): 98-108.
[11] WANG Tongchuan, CHEN Haoru, WEN Longbin, QIAN Yugui, LI Yuzhuo, WEN Huaguo. Identification and reservoir significance of Carboniferous karst paleogeomorphology in Wubaiti area,eastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(4): 109-121.
[12] ZOU Liansong, XUWenli, LIANG Xiwen, LIU Haotian, ZHOU Kun, HOU Fei, ZHOU Lin, WEN Huaguo. Sedimentary characteristics and sources of shale of Dongyuemiao member of Lower Jurassic Ziliujing Formation in eastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(4): 122-135.
[13] ZHU Biao, ZOU Niuniu, ZHANG Daquan, DU Wei, CHEN Yi. Characteristics of shale pore structure and its oil and gas geological significance of Lower Cambrian Niutitang Formation in Fenggang area,northern Guizhou [J]. Lithologic Reservoirs, 2024, 36(4): 147-158.
[14] JI Yubing, GUO Bingru, MEI Jue, YIN Zhijun, ZOU Chen. Fracture modeling of shale reservoirs of Silurian Longmaxi Formation in Luobu syncline in Zhaotong National Shale Gas Demonstration Area, southern margin of Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(3): 137-145.
[15] ZHU Kangle, GAO Gang, YANG Guangda, ZHANG Dongwei, ZHANG Lili, ZHU Yixiu, LI Jing. Characteristics of deep source rocks and hydrocarbon accumulation model of Paleogene Shahejie Form ationin Qingshui subsag,Liaohe Depression [J]. Lithologic Reservoirs, 2024, 36(3): 146-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] KUANG Hongwei, GAO Zhenzhong, WANG Zhengyun, WANG Xiaoguang. A type of specific subtle reservoir : Analysis on the origin of diagenetic trapped reservoirs and its significance for exploration in Xia 9 wellblock of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(1): 8 -14 .
[2] LI Guojun, ZHENG Rongcai, TANG Yulin, WANG Yang, TANG Kai. Sequence-based lithofacies and paleogeography of Lower Triassic Feixianguan Formation in northeastern Sichuan Basin[J]. Lithologic Reservoirs, 2007, 19(4): 64 -70 .
[3] CAI Jia. Sedimentary facies of Neogene Sanya Formation in Changchang Sag, Qiongdongnan Basin[J]. Lithologic Reservoirs, 2017, 29(5): 46 -54 .
[4] ZHANG Hui, GUAN Da, XIANG Xuemei, CHEN Yong. Prediction for fractured tight sandstone reservoir of Xu 4 member in eastern Yuanba area,northeastern Sichuan Basin[J]. Lithologic Reservoirs, 2018, 30(1): 133 -139 .
[5] FU Guang, LIU Bo, LV Yanfang. Comprehensive evaluation method for sealing ability of mudstone caprock to gas in each phase[J]. Lithologic Reservoirs, 2008, 20(1): 21 -26 .
[6] MA Zhongliang, ZENG Jianhui, ZHANG Shanwen, WANG Yongshi,WANG Hongyu, LIU Huimin. Migration and accumulation mechanism of sand lens reservoirs and its main controlling factors[J]. Lithologic Reservoirs, 2008, 20(1): 69 -74 .
[7] WANG Yingming. Analysis of the mess in sequence hierarchy applied in the industrialized application of the sequence stratigraphy[J]. Lithologic Reservoirs, 2007, 19(1): 9 -15 .
[8] WEI Pingsheng, PAN Shuxin, WAN G Jiangong,LEI Ming. Study of the relationship between lithostratigraphic reservoirs and lakeshore line:An introduction on lakeshore line controlling oil /gas reservoirs in sag basin[J]. Lithologic Reservoirs, 2007, 19(1): 27 -31 .
[9] YI Dinghong, SHI Lanting, JIA Yirong. Sequence stratigraphy and subtle reservoir of Aershan Formation in Baorao Trough of Jiergalangtu Sag[J]. Lithologic Reservoirs, 2007, 19(1): 68 -72 .
[10] YANG Zhanlong, PENG Licai, CHEN Qilin, GUO Jingyi,LI Zaiguang, HUANG Yunfeng. Petroleum accumulation condition analysis and lithologic reservoir exploration in Shengbei Depression of Turpan-harmy Basin[J]. Lithologic Reservoirs, 2007, 19(1): 62 -67 .
TRENDMD: