Lithologic Reservoirs ›› 2025, Vol. 37 ›› Issue (5): 70-82.doi: 10.12108/yxyqc.20250507

• PETROLEUM EXPLORATION • Previous Articles    

Origin of overpressure and natural gas accumulation characteristics of Miocene Meishan Formation in the deepwater area,Qiongdongnan Basin

LIU Haiyu, HU Lin, LIU Bing, TUO Lei, LI Hu, JIANG Rufeng, WU Shijiu   

  1. Hainan Branch of CNOOC Ltd., Haikou 570100, China
  • Received:2025-03-10 Revised:2025-05-08 Published:2025-09-06

Abstract: Comprehensively utilizing overpressure logging response characteristics,basin numerical simulation, fluid inclusion analysis,drilled core observation,and thin section identification,combined with the analysis of geological conditions for natural gas accumulation,the overpressure characteristics and genesis mechanism of Miocene Meishan Formation gas reservoir in Ledong-Lingshui Sag of the deep water area in Qiongdongnan Basin were analyzed. The coupling relationship between reservoir strong overpressure formation and natural gas accumulation process was explored,and the reservoir formation mode was clarified. The results show that: (1)The pressure of Meishan Formation in Ledong-Lingshui Sag ranges from 49.74 to 95.76 MPa,with a pressure coefficient of 1.37-2.09,which is overpressure-strong overpressure. The pressure structure of a single well shows a typical double-layer overpressure structure. In the early stage,overpressure was mainly controlled by un‐dercompaction,while in the late stage,it was jointly controlled by hydrocarbon fluid pressurization and undercompaction.(2)Natural gas in the study area is jointly sourced by Oligocene and Miocene source rocks,with three stages of oil and gas charging. The first stage(6.0 Ma)was liquid hydrocarbon charging,the second stage (2.7 Ma)was hydrocarbon gas charging,and the peak period of reservoir formation was 1.9-1.0 Ma. The third stage(1.8-1.2 Ma)was CO2 charging.(3)The strong overpressure in Meishan Formation reservoir in the study area is closely related to the process of natural gas migration and accumulation. Overpressure provides a key driving force for oil and gas migration,which is conducive to the formation of pressure relief channels,such as fractures and microcracks. The multi-stage injection of hydrocarbon containing acidic fluids leads to organic acid dissolution and transformation,effectively promoting the development of secondary dissolution pores. Late overpressure has a positive impact on the preservation of reservoir pores. Meishan Formation natural gas reservoir has the characteristics of“multi-source hydrocarbon supply-overpressure drive-vertical fracture transport-multistage filling-large sand body aggregation-preferential enrichment of near source overpressure dissolution type reservoirs”

Key words: paleo-pressure evolution, abnormal high pressure, undercompaction overpressure, overpressure during oil and gas filling, multi-source hydrocarbon supply, Meishan Formation, Miocene, Ledong-Lingshui Sag, Qiongdongnan Basin

CLC Number: 

  • TE122.1
[1] 朱伟林,张功成,杨少坤. 南海北部大陆边缘盆地天然气地质[M]. 北京:石油工业出版社,2007:391. ZHU Weilin,ZHANG Gongcheng,YANG Shaokun. Natural gas geology of northern continental margin of South China Sea[M]. Beijing:Petroleum Industry Press,2007:391.
[2] 朱光辉,陈刚,刁应护. 琼东南盆地温压场特征及其与油气运聚的关系[J]. 中国海上油气(地质),2000,14(1):29-36. ZHU Guanghui,CHEN Gang,DIAO Yinghu. Characteristics of geotherm-pressure field and its relationship with hydrocarbon migration and accumulation in Qiongdongnan Basin,South China Sea[J]. China Offshore Oil and Gas(Geology),2000, 14(1):29-36.
[3] 甘军,吴迪,张迎朝,等. 琼东南盆地现今地层温度分布特征及油气地质意义[J]. 高校地质学报,2019,25(6):952-960. GAN Jun,WU Di,ZHANG Yingzhao,et al. Distribution pattern of present-day formation temperature in the Qiongdongnan Basin:Implications for hydrocarbon generation and preservation[J]. Geological Journal of China Universities,2019,25(6):952-960.
[4] 刘爱群,范彩伟,邓勇,等. 南海琼东南高压盆地压力结构与油气成藏关系[J]. 地球物理进展,2017,32(4):1817-1822. LIU Aiqun,FAN Caiwei,DENG Yong,et al. Pressure structure and relationship with hydrocarbon accumulation in Nanhai Qiongdongnan high-pressure basin[J]. Progress in Geophysics, 2017,32(4):1817-1822.
[5] 翟普强,陈红汉,谢玉洪,等. 琼东南盆地深水区超压演化与油气运移模拟[J]. 中南大学学报(自然科学版),2013,44(10):4187-4201. ZHAI Puqiang,CHEN Honghan,XIE Yuhong,et al. Modelling of evolution of overpressure system and hydrocarbon migration in deepwater area of Qiongdongnan basin,South China Sea[J]. Journal of Central South University(Science and Technology), 2013,44(10):4187-4201.
[6] 王子嵩,刘震,王振峰,等. 琼东南盆地深水区中央坳陷带异常压力分布特征[J]. 地质学报,2014,35(3):355-364. WANG Zisong,LIU Zhen,WANG Zhenfeng,et al. Distribution characteristics of abnormal pressure in central depression belt,deepwater area,Qiongdongnan(Southeast Hainan)Basin[J]. Acta Geoscientica Sinica,2014,35(3):355-364.
[7] 王敏芳. 琼东南盆地超压特征及超压体与油气分布的关系[J]. 海洋石油,2003,23(1):15-22. WANG Minfang. The character of overpressure and its relationship with the distribution of oil and gas,Qiongdongnan Basin[J]. Offshore Oil,2003,23(1):15-22.
[8] 胡林,胡潜伟,王思雨,等. 琼东南盆地深水区基岩潜山超压成因及油气成藏特征[J]. 地球科学,2025,50(2):433-452. HU Lin,HU Qianwei,WANG Siyu,et al. Origin of the overpressure and hydrocarbon accumulation characteristics of bedrock buried hills in the deepwater area,Qiongdongnan Basin[J]. Earth Science,2025,50(2):433-452.
[9] 甘军,梁刚,李兴,等. 琼东南盆地梅山组海底扇天然气成因类型及成藏模式[J]. 地质学报,2022,96(3):1069-1078. GAN Jun,LIANG Gang,LI Xing,et al. Genetic types and accumulation model of submarine fan gas in the Meishan Formation,Qiongdongnan basin[J]. Acta Geologica Sinica,2022,96(3):1069-1078.
[10] 甘军,张迎朝,梁刚,等.琼东南盆地深水区天然气成藏过程及动力机制研究[J]. 地质学报,2018,92(11):2359-2367. GAN Jun,ZHANG Yingzhao,LIANG Gang,et al. On accumulation process and dynamic mechanism of natural gas in the deep water area of central canyon,Qiongdongnan Basin[J]. Acta Geologica Sinica,2018,92(11):2359-2367.
[11] 黄艳辉,刘震,郭志峰,等. 南海北部高温断陷地温-地压系统特征及其成藏意义分析[J]. 地质论评,2013,59(3):470-478. HUANG Yanhui,LIU Zhen,GUO Zhifeng,et al. Characteristics of geotemperature-geopressure system in basins with high geotemperature of northern South China Sea and its significance in hydrocarbon accumulation[J]. Geological Review, 2013,59(3):470-478.
[12] 王振峰,李绪深,孙志鹏,等. 琼东南盆地深水区油气成藏条件和勘探潜力[J]. 中国海上油气,2011,23(1):7-13. WANG Zhenfeng,LI Xushen,SUN Zhipeng,et al. Hydrocarbon accumulation conditions and exploration potential in the deep-water region,Qiongdongnan Basin[J]. China Offshore Oil and Gas,2011,23(1):7-13.
[13] 何家雄,夏斌,王志欣,等. 南海北部边缘盆地西区油气运聚成藏规律与勘探领域剖析[J]. 石油学报,2006,27(4):8-14. HE Jiaxiong,XIA Bin,WANG Zhixin,et al. Hydrocarbon accumulation and exploratory orientation in the western marginal basin of the northern South China Sea[J]. Acta Petrolei Sinica, 2006,27(4):8-14.
[14] 黄保家,李绪深,王振峰,等. 琼东南盆地深水区烃源岩地球化学特征与天然气潜力[J]. 中国海上油气,2012,24(4):1-7. HUANG Baojia,LI Xushen,WANG Zhenfeng,et al. Source rock geochemistry and gas potential in the deep water area, Qiongdongnan Basin[J]. China Offshore Oil and Gas,2012,24(4):1-7.
[15] 黄保家,黄合庭,李里,等. 莺-琼盆地海相烃源岩特征及高温高压环境有机质热演化[J]. 海相油气地质,2010,15(3):11-18. HUANG Baojia,HUANG Heting,LI Li,et al. Characteristics of marine source rocks and effect of high temperature and overpressure to organic matter maturation in Yinggehai-Qiongdongnan basins[J]. Marine Origin Petroleum Geology,2010,15(3):11-18.
[16] 甘军,张迎朝,杨希冰,等. 琼东南盆地深水区源-储共控的天然气成藏模式[J].高校地质学报,2022,28(5):635-643. GAN Jun,ZHANG Yingzhao,YANG Xibing,et al. Natural gas accumulation model controlled jointly by source and reservoir in deep water area of Qiongdongnan Basin[J]. Geological Journal of China Universities,2022,28(5):635-643.
[17] 尤丽,江汝锋,徐守立,等.琼东南盆地深水区乐东陵水凹陷梅山组天然气成藏特征与勘探潜力[J]. 中国海上油气, 2021,33(5):24-31. YOU Li,JIANG Rufeng,XU Shouli,et al. Accumulation characteristics and exploration potential of Meishan Formation gas in Ledong-Lingshui Sag,deep water area of Qiongdongnan Basin[J]. China Offshore Oil and Gas,2021,33(5):24-31.
[18] 李超,罗晓容. 泥岩化学压实作用研究进展[J]. 地球科学与环境学报,2017,39(6):761-772. LI Chao,LUO Xiaorong. Review on mudstone chemical composition[J]. Journal of Earth Sciences and Environment,2017, 39(6):761-772.
[19] 何玉,周星,李少轩,等. 渤海湾盆地渤中凹陷古近系地层超压成因及测井响应特征[J]. 岩性油气藏,2022,34(3):60-69. HE Yu,ZHOU Xing,LI Shaoxuan,et al. Genesis and logging response characteristics of formation overpressure of Paleogene in Bozhong Sag,Bohai Bay Basin[J]. Lithologic Reservoirs, 2022,34(3):60-69.
[20] 赵靖舟,李军,徐泽阳. 沉积盆地超压成因研究进展[J].石油学报,2017,38(9):973-998. ZHAO Jingzhou,LI Jun,XU Zeyang. Advances in the origin of overpressures in sedimentary basins[J]. Acta Petrolei Sincia, 2017,38(9):973-998.
[21] APLIN A C,MACLEOD G,LARTER S R,et al. Combined use of confocal laser scanning microscopy and PVT simulation for estimating the composition and physical properties of petroleum in fluid inclusions[J]. Marine and Petroleum Geology, 1999,16(2):97-110.
[22] 王金志,杨少武,蒋森堡,等. 流体包裹体热动力学模拟技术的古压力恢复方法及应注意的问题[J].中国石油勘探,2008, 13(1):44-47. WANG Jinzhi,YANG Shaowu,JIANG Senbao,et al. Methods for paleopressure reconstruction based on thermodynamic simulation technologies of fluid inclusion and some problems needing attention[J]. China Petroleum Exploration,2008,13(1):44-47.
[23] 苏奥,陈红汉,雷川,等. 流体包裹体PVTx模拟研究油气充注期次和古压力恢复:以西湖凹陷平湖构造带为例[J]. 地质科技情报,2014,33(6):137-142. SU Ao,CHEN Honghan,LEI Chuan,et al. Application of PVTx simulation of fluid inclusions to estimate petroleum charge stages and restore pressure:Using Pinghu structural belt in Xihu depression as an example[J]. Geological Science and Technology Information,2014,33(6):137-142.
[24] 解巧明. 包裹体热力学与数值模拟恢复出的古流体压力及对油气成藏的影响:以准噶尔盆地南缘呼图壁-阜康地区为例[D].西安:西北大学,2018. XIE Qiaoming. Paleo-fluid pressure restored by ways of fluid inclusions thermodynamics and numerical simulation and its effects on hydrocarbon accumulation in:A case study of HutubiFukang area,the sourthern margin of Junggar Basin[D]. Xi'an:Northwest University,2018.
[25] BOWERS G L. Detecting high overpressure[J]. The Leading Edge,2002,21(2):174-177.
[26] 魏成林,张凤奇,江青春,等.准噶尔盆地阜康凹陷东部深层二叠系超压形成机制及演化特征[J]. 岩性油气藏,2024,36(5):167-177. WEI Chenglin,ZHANG Fengqi,JIANG Qingchun,et al. Formation mechanism and evolution characteristics of overpressure in deep Permian in eastern Fukang Sag,Junggar Basin[J]. Lithologic Reservoirs,2024,36(5):167-177.
[27] 王志宏,郝翠果,李建明,等. 川西前陆盆地超压分布及成因机制[J]. 岩性油气藏,2019,31(6):36-43. WANG Zhihong,HAO Cuiguo,LI Jianming,et al. Distribution and genetic mechanism of overpressure in western Sichuan foreland basin[J]. Lithologic Reservoirs,2019,31(6):36-43.
[28] LAHANN R W,SWARBRICK R E. Overpressure generation by load transfer following shale framework weakening due to smectite diagenesis[J]. Geofluids,2011,11:362-375.
[29] 李亚敏,施小斌,徐辉龙,等. 琼东南盆地构造沉降的时空分布及裂后期异常沉降机制[J]. 吉林大学学报(地球科学版), 2012,42(1):47-57. LI Yamin,SHI Xiaobin,XU Huilong,et al. Temporal and spatial distribution of tectonic subsidence and discussion on formation mechanism of anomalous post-rift tectonic subsidence in the Qiongdongnan Basin[J]. Journal of Jilin University(Earth Science Edition),2012,42(1):47-57.
[30] 龚再升,李思田,谢泰俊,等. 南海北部边缘盆地分析与油气聚集[M]. 北京:科学出版社,1997. GONG Zaisheng,LI Sitian,XIE Taijun,et al. Analysis of oil and gas accumulation in the continental margin basin,north of South Sea,China[M]. Beijing:Science Press,1997.
[31] 张启明,董伟良. 中国含油气盆地中的超压体系[J]. 石油学报,2000,21(6):1-11. ZHANG Qiming,DONG Weiliang. Overpressure system of hydrocarbon-bearing basins in China[J]. Acta Petrolei Sinica, 2000,21(6):1-11.
[32] 梁刚,甘军,李兴.琼东南盆地陵水凹陷天然气成因类型及来源[J]. 中国海上油气,2015,27(4):47-53. LIANG Gang,GAN Jun,LI Xing. Genetic types and origin of natural gas in Lingshui sag,Qiongdongnan Basin[J]. China Offshore Oil and Gas,2015,27(4):47-53.
[33] 黄保家,王振峰,梁刚.琼东南盆地深水区中央峡谷天然气来源及运聚模式[J]. 中国海上油气,2014,26(5):8-14. HUANG Baojia,WANG Zhenfeng,LIANG Gang. Natural gas source and migration-accumulation pattern in the central canyon,the deep water area,Qiongdongnan basin[J]. China Offshore Oil and Gas,2014,26(5):8-14.
[34] 唐建云,张刚,史政,等. 鄂尔多斯盆地丰富川地区延长组流体包裹体特征及油气成藏期次[J]. 岩性油气藏,2019,31(3):20-26. TANG Jianyun,ZHANG Gang,SHI Zheng,et al. Characteristics of fluid inclusions and hydrocarbon accumulation stages of Yanchang Formation in Fengfuchuan area,Ordos Basin[J]. Lithologic Reservoirs,2019,31(3):20-26.
[35] 黄向胜,闫琢玉,张东峰,等.琼东南盆地Ⅱ号断裂带新生界多期热流体活动与天然气运聚特征[J]. 岩性油气藏,2024, 36(5):67-76. HUANG Xiangsheng,YAN Zhuoyu,ZHANG Dongfeng,et al. Characteristics of multi-phase thermal fluid activity and natural gas migration-accumulation of Cenozoic in No. 2 fault zone of Qiongdongnan Basin[J]. Lithologic Reservoirs,2024,36(5):67-76.
[36] 范彩伟,李绪深,刘昆,等. 琼东南盆地乐东、陵水凹陷中新统岩性地层圈闭成藏条件[J]. 中国海上油气,2016,28(2):53-59. FAN Caiwei,LI Xushen,LIU Kun,et al. Hydrocarbon accumulation condition of Miocene litho-stratigraphic trap in Ledong & Lingshui sags,Qiongdongnan basin[J]. China Offshore Oil and Gas,2016,28(2):53-59.
[37] 柳广弟,孙明亮. 剩余压力差在超压盆地天然气高效成藏中的意义[J]. 石油与天然气地质,2007,28(2):203-208. LIU Guangdi,SUN Mingliang. Significane of excess differential pressure in highly efficient gas accumulation in overpressured basins[J]. Oil &Gas Geology,2007,28(2):203-208.
[38] 龚再升,李思田,杨甲明. 南海北部大陆边缘盆地油气成藏动力学研究[M]. 北京:科学出版社,2004:339. GONG Zaisheng,LI Sitian,YANG Jiaming. Dynamic research of oil and gas accumulation in northern marginal basins of South China Sea[M]. Beijing:Science Press,2004:339.
[39] 胡德胜,钟佳,满勇,等. 琼东南盆地西区海底扇高温超压储层成岩作用与孔隙演化[J]. 沉积与特提斯地质,2025,45(2):294-304. HU Desheng,ZHONG Jia,MAN Yong,et al. Diagenesis and porosity evolution of high-temperature and overpressure sandstone reservoirs in submarine fans of the west area of the Qiongdongnan Basin[J]. Sedimentary Geology and Tethyan Geology,2025,45(2):294-304.
[40] STUART C A,KOZIK H G. Geopressuring mechanism of smackover gas reservoirs,Jackson Dome Area,Mississippi[J]. Journal of Petroleum Technology,1977,29(5):579-585.
[41] 李伟,刘平,艾能平,等. 莺歌海盆地乐东地区中深层储层发育特征及成因机理[J]. 岩性油气藏,2020,32(1):19-26. LI Wei,LIU Ping,AI Nengping,et al. Development characteristics and genetic mechanism of mid-deep reservoirs in Ledong area,Yinggehai Basin[J]. Lithologic Reservoirs,2020,32(1):19-26.
[42] 高彦杰,甘军,胡潜伟,等. 琼东南盆地深水西区梅山组储层成岩-孔隙协同演化机制[J]. 吉林大学学报(地球科学版), 2024,54(6):2014-2028. GAO Yanjie,GAN Jun,HU Qianwei,et al. Reservior diagenesispore co-evolution mechanism of Meishan Formation in deepwater west zone of Qiongdongnan Basin[J]. Journal of Jilin University(Earth Science Edition),2024,54(6):2014-2028.
[1] YIN Yanshu, LI Jianqin, WU Wei, WANG Lixin, TAN Xianfeng. Sedimentary characteristics and reservoir architecture of anastomosing river in Miocene Guantao Formation,Lindong area,Dongying Sag [J]. Lithologic Reservoirs, 2025, 37(4): 1-16.
[2] HUANG Xiangsheng, YAN Zhuoyu, ZHANG Dongfeng, HUANG Heting, LUO Chengfei. Characteristics of multi-phase thermal fluid activity and natural gas migration-accumulation of Cenozoic in No. 2 fault zone of Qiongdongnan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 67-76.
[3] HONG Guoliang, WANG Hongjun, ZHU Houqin, BAI Zhenhua, WANG Wenwen. Hydrocarbon accumulation conditions and favorable zones of lithologic reservoirs of Miocene Gumai Formation in block J,South Sumatra Basin [J]. Lithologic Reservoirs, 2023, 35(6): 138-146.
[4] DUAN Ruikai, ZHANG Xu, GUO Fuxin, CHEN Guoning, HU Guangyi, ZOU Jingyun. Internal sedimentary structure and stacking patterns of deep-water lobe complex:A case study of Miocene zone D in Akpo oilfield, Niger Delta Basin [J]. Lithologic Reservoirs, 2022, 34(5): 110-120.
[5] HE Yu, ZHOU Xing, LI Shaoxuan, DING Hongbo. Genesis and logging response characteristics of formation overpressure of Paleogene in Bozhong Sag,Bohai Bay Basin [J]. Lithologic Reservoirs, 2022, 34(3): 60-69.
[6] ZHANG Xiaozhao, WU Jing, PENG Guangrong, XU Xinming, ZHENG Xiaobo. Miocene river-wave dominated sedimentary system in south belt of Enping Sag and its significance [J]. Lithologic Reservoirs, 2022, 34(2): 95-104.
[7] QU Tong, GAO Gang, XU Xinde, WANG Rui, GAN Jun, LIANG Gang, YOU Junjun. Simulation experiment of argillaceous sedimentary law of delta-shallow sea sedimentary system: A case study of Yanan Sag, Qiongdongnan Basin [J]. Lithologic Reservoirs, 2022, 34(1): 24-33.
[8] LI Xiang, WANG Jiangong, ZHANG Ping, LI Lin, HUANG Chenggang, WU Kunyu, ZHANG Qinghui, LONG Wei. Fracture genesis mechanism and geological significance of E32 in Yingxi area, Qaidam Basin [J]. Lithologic Reservoirs, 2018, 30(6): 45-54.
[9] LI Wenjing, WANG Yingmin, HE Min, CHEN Weitao, XU Shaohua, ZHUO Haiteng. Types and controlling factors of shelf margin delta of Middle Miocene in Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2018, 30(2): 58-66.
[10] MAO Xuelian, ZHU Jitian, YAO Zhe, XU Shouli, TANG Lishan. Sandbody genesis and distribution regularity of Central Canyon in deepwater area of Qiongdongnan Basin [J]. Lithologic Reservoirs, 2017, 29(6): 60-68.
[11] CAI Jia. Sedimentary facies of Neogene Sanya Formation in Changchang Sag, Qiongdongnan Basin [J]. Lithologic Reservoirs, 2017, 29(5): 46-54.
[12] WU Aijun, XU Jianyong, TENG Binbin, XIAO Lingli, KANG Bo, LI Fanyi, YIN Binhao. Fine description method of dynamic provenance and its application:a case from Yanan Sag,Qiongdongnan Basin [J]. Lithologic Reservoirs, 2017, 29(4): 55-63.
[13] WANG Zhihong, LI Jianming. Abnormal high pressure and its relation to hydrocarbon accumulation in Raoyang Sag [J]. Lithologic Reservoirs, 2014, 26(6): 15-19.
[14] LIU Chang, SU Long, GUAN Baowen, ZHENG Youwei, CHANG Jiang, ZHENG Jianjing. Thermolytic dynamics and hydrocarbon generation characteristics of Maoming Oil Shale: Taking the geological model of Qiongdongnan Basin as an example [J]. Lithologic Reservoirs, 2014, 26(6): 89-97.
[15] QU Jianhua, WANG Zesheng, REN Benbing, BAI Yu, WANG Bin. Genetic mechanism analysis and prediction method of abnormal high pressure in Mahu slope area, Junggar Basin [J]. Lithologic Reservoirs, 2014, 26(5): 36-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
TRENDMD: