Lithologic Reservoirs ›› 2026, Vol. 38 ›› Issue (1): 146-161.doi: 10.12108/yxyqc.20260113

• PETROLEUM EXPLORATION • Previous Articles    

Paleogeomorphologic characteristics and sand control mechanisms of Cretaceous Shahezi Formation in Lishu fault depression, southern Songliao Basin

XIAO Meng1(), ZHOU Yong2,3(), WANG Ke2,3, YAN Jingchi2,3, ZHANG Yuejie2,3   

  1. 1 China Petroleum & Chemical Corporation Northeast Oil & Gas Branch, Changchun 130062, China
    2 College of GeosciencesChina University of Petroleum (Beijing), Beijing 102249, China
    3 State Key laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing 102249, China
  • Received:2025-04-15 Revised:2025-05-18 Online:2026-01-01 Published:2026-01-23
  • Contact: ZHOU Yong E-mail:271660443@qq.com;zhouyong@cup.edu.cn

Abstract:

By comprehensively utilizing well logging and seismic interpretation data, activity characteristics of Cretaceous Shahezi Formation synsedimentary faults in Lishu fault depression of southern Songliao Basin were analyzed. The paleogeomorphology was reconstructed based on the impression method, and the controlling role of paleogeomorphology on sedimentary systems were explored. The results show that: (1) The fault activity rate during the deposition of Member 2 of Cretaceous Shahezi Formation in Lishu fault depression was generally higher than that during the deposition of Member 1, showing a trend of first increasing and then decreasing towards the north. (2) During the depositional period of Shahezi Formation, the steep slope zone of Lishu fault depression primarily developed nearshore subaqueous fan and deep-lacustrine sedimentary systems, while the gentle slope zone mainly developed fan delta and shallow-lacustrine sedimentary systems. (3) The paleogeomorphology of the study area controls the distribution of sedimentary facies and sand bodies. Four paleogeomorphic types,such as valleys,transverse uplifts (subaqueous uplifts), strike slopes, and structural slope-break zones,have been identified,all of them exert significant control on sand bodies distribution. Valleys can serve as sand transport pathways, controlling the progression of sand bodies from source areas to depositional areas, and also acting as depositional unloading units. Transverse uplifts developed along the edges of steep slope scarps promote the fan-shaped dispersal of sand bodies into the basin. Strike slopes control the lateral extension of sand bodies, and activity at the terminations of synsedimentary faults governs the pathways of sand diffusion from source areas into the basin. Structural slope-break zones control the transport, migration, and enrichment locations of sand bodies within the basin, which are favorable zones for exploring sandstone oil and gas reservoirs. (4) The depositional period of Shahezi Formation in the study area exhibited a paleogeomorphy sand control model of“multi-source supply—fault-controlled channels—paleogeomorphic sand accumulation”.

Key words: paleogeomorphology, nearshore subaqueous fan, fan delta, fault activity, sand control mechanism, Shahezi Formation, Cretaceous, Lishu fault depression, Songliao Basin

CLC Number: 

  • TE121

Fig. 1

Tectonic unit division of Lishu fault depression (a) and comprehensive stratigraphic column of Cretaceous (b) of Songliao Basin"

Fig. 2

Balanced geological section of NW—NE trending structure in Lishu fault depression"

Fig. 3

Activity of main depression-controlling faults in Cretaceous Shahezi Formation of Lishu fault depression"

Fig. 4

Contemporary stratigraphic thickness of Member 1 (a) and Member 2 (b) of Shahezi Formation of Cretaceous in Lishu fault depression"

Fig. 5

Porosity-depth relationship of Member 2 of Cretaceous Shahezi Formation in Lishu fault depression"

Table 1

Sandstone-mudstone compaction restoration data of Member 2 of Cretaceous Shahezi Formation in Lishu fault depression"

Fig. 6

Thickness restoration before compaction of Member 1 (a) and Member 2 (b) of Cretaceous Shahezi Formation in various areas in Lishu fault depression"

Fig. 7

Thickness restoration before compaction of Member 1 (a) and Member 2 (b) of Cretaceous Shahezi Formation in Lishu fault depression"

Fig. 8

Denudation thickness restored using the stratigraphic trend method of Member 2 of Cretaceous Shahezi Formation in Lishu fault depression"

Fig. 9

Paleogeomorphologic characteristics of sedimentary period of Member 1 (a) and Member 2 (b) of Cretaceous Shahezi Formation in Lishu fault depression"

Fig. 10

Lithofacies characteristics of typical sedimentary facies of Cretaceous Shahezi Formation in Lishu fault depression"

Fig. 11

Seismic facies features of sedimentary systems of Cretaceous Shahezi Formation in Lishu fault depression"

Fig. 12

Distribution characteristics of sedimentary facies of Member 1 (a) and Member 2 (b) of Cretaceous Shahezi Formation in Lishu fault depression"

Table 2

Paleo-valley and sedimentary body data of Member 2 of Cretaceous Shahezi Formation in the middle segment of Sangshutai and northern slope zone of Lishu fault depression"

沟谷
编号
汇水单元
面积/km2
测线 沟谷
类型
基本参数 沉积物
规模/
km2
输砂能力
宽度/m 深度/m 宽深比
V1 7.81 a U型 1 730 300 5.77 4.04 中等
b V型 1 620 350 4.63 中等
c V型 2 000 400 5.00 中等
V2 9.03 a U型 1 600 220 7.27 5.79 较强
b W型 3 550 219 16.21 较强
c W型 4 348 503 8.64 较强
V3 6.99 a V型 1 678 590 2.84 3.84 较强
b V型 1 530 640 2.39 较强
c V型 1 700 290 5.86
V4 19.14 a V型 2 964 1 270 2.33 6.29 较强
b U型 2 900 1 100 2.63 较强
c V型 1 500 592 2.53 较强
V5 2.54 a U型 1 800 490 3.67 1.27
b U型 1 600 350 4.57 较强
c U型 1 550 280 5.54
V6 d 断槽型 1 340 390 3.44 较强
V7 d 断槽型 880 450 1.96 中等
V8 d 断槽型 903 404 2.24 中等

Fig. 13

Evolution characteristics of Cretaceous Shahezi Formation valleys in western side of Sangshutai fault in Lishu fault depression"

Fig. 14

Development models and seismic profiles of transverse uplifts in Cretaceous Shahezi Formation in Lishu fault depression"

Fig. 15

Development models and seismic profiles of strike slopes in Cretaceous Shahezi Formation of Lishu fault depression"

Fig. 16

Sedimentary filling models of structural slope-break zones in Cretaceous Shahezi Formation of Lishu fault depression"

Fig. 17

Paleogeomorphology sand control models of Member 2 of Cretaceous Shahezi Formation in Lishu fault depression"

[1] 蔡周荣, 殷征欣, 叶军, 等. 珠江口盆地向海阶梯状断裂特征及成因分析[J]. 中国科技论文, 2015, 10(3):322-326.
CAI Zhourong, YIN Zhengxin, YE Jun, et al. Characteristics and formation mechanism of the ladder-like faults towards the sea in Pearl River Mouth Basin[J]. China Sciencepaper, 2015, 10(3):322-326.
[2] 赵文智, 魏国齐, 杨威, 等. 四川盆地万源—达州克拉通内裂陷的发现及勘探意义[J]. 石油勘探与开发, 2017, 44(5):659-669.
doi: 10.11698/PED.2017.05.01
ZHAO Wenzhi, WEI Guoqi, YANG Wei, et al. Discovery of Wanyuan-Dazhou Intracratonic Rift and its exploration significance in the Sichuan Basin,SW China[J]. Petroleum Exploration and Development, 2017, 44(5):659-669.
doi: 10.11698/PED.2017.05.01
[3] 马兵山, 漆家福, 王俊怀, 等. 南海北部珠江口盆地珠一坳陷西江凹陷与陆丰凹陷差异裂陷过程定量分析[J]. 高校地质学报, 2022, 28(5):669-687.
MA Bingshan, QI Jiafu, WANG Junhuai, et al. Quantitative analysis of differential rifting process in the Xijiang and Lufeng Sags of the Zhu 1 Depression,Pearl River Mouth Basin,Northern South China Sea[J]. Geological Journal of China Universities, 2022, 28(5):669-687.
[4] 张翠梅, 刘晓峰, 任建业, 等. “构造-沉积分析”及其在沉积盆地中的应用[J]. 热带海洋学报, 2012, 31(3):128-136.
doi: 10.11978/j.issn.1009-5470.2012.03.017
ZHANG Cuimei, LIU Xiaofeng, REN Jianye, et al. Principle of the “tectono-sedimentary analysis” and its application in sedimentary basins[J]. Journal of Tropical Oceanography, 2012, 31(3):128-136.
doi: 10.11978/j.issn.1009-5470.2012.03.017
[5] 王黎, 王果寿, 邱岐, 等. 松辽盆地梨树断陷深部层系沉积特征及演化分析[J]. 石油实验地质, 2014, 36(3):316-324.
WANG Li, WANG Guoshou, QIU Qi, et al. Sedimentary features and evolution of deep series in Lishu Fault Depression,Songliao Basin[J]. Petroleum Geology & Experiment, 2014, 36(3):316-324.
[6] 赵泽辉, 徐淑娟, 姜晓华, 等. 松辽盆地深层地质结构及致密砂砾岩气勘探[J]. 石油勘探与开发, 2016, 43(1):12-23.
doi: 10.11698/PED.2016.01.02
ZHAO Zehui, XU Shujuan, JIANG Xiaohua, et al. Deep strata geologic structure and tight conglomerate gas exploration in Songliao Basin,East China[J]. Petroleum Exploration and Development, 2016, 43(1):12-23.
doi: 10.11698/PED.2016.01.02
[7] 王宏语, 李瑞磊, 朱建峰, 等. 松辽盆地梨树断陷构造沉积学特征及发育机制[J]. 地学前缘, 2023, 30(4):112-127.
doi: 10.13745/j.esf.sf.2022.10.23
WANG Hongyu, LI Ruilei, ZHU Jianfeng, et al. Tectono-sedi-mentary characteristics and formation mechanism of the Lishu rift depression,Songliao Basin[J]. Earth Science Frontiers, 2023, 30(4):112-127.
doi: 10.13745/j.esf.sf.2022.10.23
[8] 李耀华, 徐兴友, 张君峰, 等. 火山活动期断陷湖盆富有机质混积页岩形成条件:以松辽盆地南部梨树断陷沙河子组富有机质页岩为例[J]. 地球科学, 2022, 47(5):1728-1747.
LI Yaohua, XU Xingyou, ZHANG Junfeng, et al. Hybrid sedimentary conditions of organic-rich shales in faulted lacustrine basin during volcanic eruption episode:A case study of Shahezi Formaton (K1sh Fm.),Lishu Faulted Depression,South Songliao Basin[J]. Earth Science, 2022, 47(5):1728-1747.
[9] 陈永进, 李友. 基于米氏旋回的页岩高频层序划分与页岩有机质富集模式:以松辽盆地梨树断陷北斜坡营城组为例[J]. 石油科学通报, 2024, 9(4):535-548.
CHEN Yongjin, LI You. Division of high-frequency shale sequences and organic matter enrichment patterns in shales based on Milankovitch cycles:A case study of the Yingcheng Formation in the Northern Slope of the Lishu Fault Depression,Songliao Basin[J]. Petroleum Science Bulletin, 2024, 9(4):535-548.
[10] 鄢继华, 陈世悦, 姜在兴. 东营凹陷北部陡坡带近岸水下扇沉积特征[J]. 石油大学学报(自然科学版), 2005, 29(1):12-16.
YAN Jihua, CHEN Shiyue, JANG Zaixing. Sedimentary characteristics of nearshore subaqueous fans in steep slope of Dongying depression[J]. Journal of China University of Petroleum (Edition of Natural Science), 2005, 29(1):12-16.
[11] 白立科, 邱隆伟, 杨勇强, 等. 近岸水下扇微相划分研究及意义初探:以滦平盆地下白垩统西瓜园组为例[J]. 地质学报, 2020, 94(8):2446-2459.
BAI Like, QIU Longwei, YANG Yongqiang, et al. Preliminary microfacies division and significance study of nearshore subaqueous fan:A case study from the Lower Cretaceous Xiguayuan Formation,Luanping Basin[J]. Acta Geologica Sinica, 2020, 94(8):2446-2459.
[12] 曹辉兰, 华仁民, 纪友亮, 等. 扇三角洲砂砾岩储层沉积特征及与储层物性的关系:以罗家油田沙四段砂砾岩体为例[J]. 高校地质学报, 2001, 7(2):222-229.
CAO Huilan, HUA Renmin, JI Youliang, et al. Depositional characteristics of sandstone and conglomerate reservoirs of fan delta and relationship to reservoirs’ physical properties:Taking the Fourth Member of Shahejie Formation,Luojia Oilfield,Zhanhua Depression for an example[J]. Geological Journal of China Universities, 2001, 7(2):222-229.
[13] 刘磊, 钟怡江, 陈洪德, 等. 中国东部箕状断陷湖盆扇三角洲与辫状河三角洲对比研究[J]. 沉积学报, 2015, 33(6):1170-1181.
LIU Lei, ZHONG Yijiang, CHEN Hongde, et al. Contrastive research of fan deltas and braided river deltas in half-graben rift lake basin in east China[J]. Acta Sedimentologica Sinica, 2015, 33(6):1170-1181.
[14] 向立宏, 赵铭海, 郝雪峰, 等. 济阳坳陷东营组沉积体系新认识[J]. 油气地质与采收率, 2016, 23(3):8-13.
XIANG Lihong, ZHAO Minghai, HAO Xuefeng, et al. New understanding on sedimentary system of Dongying Formation in Jiyang depression[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(3):8-13.
[15] 闫迪. 梨树断陷东部斜坡带断裂系统及控藏研究[D]. 大庆: 东北石油大学, 2016.
YAN Di. Study of fault system and its control of hydrocarbon accumulation in the Eastern Slope Zone,Lishu Fault Depression[D]. Daqing: Northeast Petroleum University, 2016.
[16] 武爱俊, 徐建永, 滕彬彬, 等. “动态物源”精细刻画方法与应用:以琼东南盆地崖南凹陷为例[J]. 岩性油气藏, 2017, 29(4):55-63.
WU Aijun, XU Jianyong, TENG Binbin, et al. Fine description method of dynamic provenance and its application:A case from Yanan Sag,Qiongdongnan Basin[J]. Lithologic Reservoirs, 2017, 29(4):55-63.
doi: 10.3969/j.issn.1673-8926.2017.04.007
[17] 李想, 付磊, 魏璞, 等. 沉积古地貌恢复及古地貌对沉积体系的控制作用:以准噶尔盆地石西地区三叠系百口泉组为例[J]. 岩性油气藏, 2025, 37(2): 38-48.
doi: 10.12108/yxyqc.20250204
LI Xiang, FU Lei, WEI Pu, et al. Restoration of sedimentary paleogeography and its control on sedimentary system:A case study of the Triassic Baikouquan Formation in Shixi area of Junggar Basin[J]. Lithologic Reservoirs, 2025, 37(2):38-48.
doi: 10.12108/yxyqc.20250204
[18] LIU Lei, CHEN Hongde, WANG Jun, et al. Geomorphological evolution and sediment dispersal processes in strike-slip and extensional composite basins:A case study in the Liaodong Bay Depression,Bohai Bay Basin,China[J]. Marine and Petroleum Geology, 2019, 110:73-90.
doi: 10.1016/j.marpetgeo.2019.07.023
[19] 叶蕾, 朱筱敏, 谢爽慧, 等. 沉积古地貌基本恢复方法及实例研究:以饶阳凹陷沙一段为例[J]. 古地理学报, 2023, 25(5):1139-1155.
doi: 10.7605/gdlxb.2023.05.077
YE Lei, ZHU Xiaomin, XIE Shuanghui, et al. Restoration methods of sedimentary palaeogeomorphology and applications:A case study of the First Member of Paleogene Shahejie Formation in Raoyang sag[J]. Journal of Palaeogeography (Chinese Edition), 2023, 25(5):1139-1155.
[20] 杨桥, 漆家福. 碎屑岩层的分层去压实校正方法[J]. 石油实验地质, 2003, 25(2):206-210.
YANG Qiao, QI Jiafu. Method of delaminated decompaction correction[J]. Petroleum Geology & Experiment, 2003, 25(2):206-210.
[21] 刘强虎. 渤海湾盆地沙垒田凸起古近系“源—渠—汇”系统耦合研究[D]. 北京: 中国石油大学(北京), 2016.
LIU Qianghu. “Source-to-sink” system coupling analysis of the Paleogene,Shaleitian Uplift,Bohai Bay Basin, China[D]. Beijing: China University of Petroleum (Beijing), 2016.
[22] 杨丽莎, 陈彬滔, 马轮, 等. 陆相湖盆坳陷期源—汇系统的要素特征及耦合关系:以南苏丹Melut盆地北部坳陷新近系Jimidi组为例[J]. 岩性油气藏, 2021, 33(3):27-38.
doi: 10.12108/yxyqc.20210303
YANG Lisha, CHEN Bintao, MA Lun, et al. Element feature and coupling model of source-to-sink system in depression lacustrine basin:A case study of Neogene Jimidi Formation in Melut Basin,South Sudan[J]. Lithologic Reservoirs, 2021, 33(3):27-38.
doi: 10.12108/yxyqc.20210303
[23] MORLEY C K, NELSON R A, PATTON T L, et al. Transfer zones in the east African rift system and their relevance to hydrocarbon exploration in rifts[J]. AAPG Bulletin, 1990, 74(8):1234-1253.
[24] 付晓飞, 孙兵, 王海学, 等. 断层分段生长定量表征及在油气成藏研究中的应用[J]. 中国矿业大学学报, 2015, 44(2):271-281.
FU Xiaofei, SUN Bing, WANG Haixue, et al. Fault segmentation growth quantitative characterization and its application on sag hydrocarbon accumulation research[J]. Journal of China University of Mining & Technology, 2015, 44(2):271-281.
[25] 吴冬, 朱筱敏, 刘常妮, 等. Fula凹陷中央转换带对岩性油藏勘探的意义:以Abu Gabra组为例[J]. 岩性油气藏, 2017, 29(4):64-72.
WU Dong, ZHU Xiaomin, LIU Changni, et al. Significance of central transfer zone on lithologic reservoir exploration:A case of Abu Gabra Formation in Fula Sag,Muglad Basin,Sudan[J]. Lithologic Reservoirs, 2017, 29(4):64-72.
doi: 10.3969/j.issn.1673-8926.2017.04.008
[26] 何雁兵, 肖张波, 郑仰帝, 等. 珠江口盆地陆丰13洼转换带中生界陆丰7-9潜山成藏特征[J]. 岩性油气藏, 2023, 35(3):18-28.
doi: 10.12108/yxyqc.20230302
HE Yanbing, XIAO Zhangbo, ZHENG Yangdi, et al. Hydrocarbon accumulation characteristics of Mesozoic Lufeng 7-9 buried hill in Lufeng 13 subsag transition zone,Pearl River Mouth Basin[J]. Lithologic Reservoirs, 2023, 35(3):18-28.
doi: 10.12108/yxyqc.20230302
[27] 侯宇光, 何生, 王冰洁, 等. 板桥凹陷构造坡折带对层序和沉积体系的控制[J]. 石油学报, 2010, 31(5):754-761.
doi: 10.7623/syxb201005009
HOU Yuguang, HE Sheng, WANG Bingjie, et al. Constraints by tectonic slope-break zones on sequences and depositional systems in the Banqiao Sag[J]. Acta Petrolei Sinica, 2010, 31(5):754-761.
doi: 10.7623/syxb201005009
[28] 冯有良, 胡素云, 李建忠, 等. 准噶尔盆地西北缘同沉积构造坡折对层序建造和岩性油气藏富集带的控制[J]. 岩性油气藏, 2018, 30(4):14-25.
FENG Youliang, HU Suyun, LI Jianzhong, et al. Controls of syndepotitional structural slope-break zones on sequence architecture and enrichment zones of lithologic reservoirs in northwestern margin of Junggar Basin[J]. Lithologic Reservoirs, 2018, 30(4):14-25.
doi: 10.12108/yxyqc.20180402
[1] HU Changhao, PEI Jiaxue, YANG Xue, CAI Guogang, FAN Jiaming, LI Li. Geological characteristics and genesis of trona deposit in Cretaceous Yixian Formation of Naiman Sag, Kailu Basin [J]. Lithologic Reservoirs, 2026, 38(1): 1-12.
[2] SUN Yuanfeng, CAO Aifeng, ZHOU Yong, GAO Chenxi, WANG Ke. Sedimentary evolution characteristics and paleogeomorphology-controlled sand distribution patterns of the upper Es4 sub-member of Paleogene in Linnan Subsag, Bohai Bay Basin [J]. Lithologic Reservoirs, 2025, 37(6): 119-130.
[3] WANG Zhen, WANG Xingzhi, ZHU Yiqing, YANG Yuran, YANG Yiming, KANG Jiahao, HUANG Baiwen, LYU Hao. Stratigraphy subdivision and exploration implications of Cambrian Qiongzhusi Formation in Deyang-Anyue aulacogen,Sichuan Basin [J]. Lithologic Reservoirs, 2025, 37(5): 97-110.
[4] ZHANG Yunfeng, SHI Xiaodong, LIU Zongbao, YANG Xuewei, WANG Hongjun, HAO Bin. Structural-lithologic trap types and main controlling factors of hydrocarbon accumulation of Cretaceous in Longhupao Oilfield,Songliao Basin [J]. Lithologic Reservoirs, 2025, 37(5): 111-121.
[5] YE Hui, ZHU Feng, WANG Guizhong, SHI Wanzhong, KANG Xiaoning, DONG Guoning, Naziyiman, WANG Ren. Paleogeomorphy restoration of Permian-Jurassic and its hydrocarbon implications in Junggar Basin,NW China [J]. Lithologic Reservoirs, 2025, 37(5): 122-132.
[6] LIU Lijuan, LI Junhui, FU Xiuli, BAI Yue, ZHENG Qiang. Characteristics and geological significance of volcanic ash of Cretaceous Qingshankou Formation in the central depression of northern Songliao Basin [J]. Lithologic Reservoirs, 2025, 37(5): 145-154.
[7] XU Sihui, ZHAO Jun, ZHAO Xinjian, WANG Junyu, LI Zhaoping, LIN Zongpeng. Fracture effectiveness evaluation of tight reservoir of Cretaceous Yageliemu Formation in Kelasu structural belt,Kuqa piedmont [J]. Lithologic Reservoirs, 2025, 37(5): 155-165.
[8] XING Qian, LI Yangfan, LI Xiang, WAN Ziqian, LI Yalan. Reservoir characteristics and main controlling factors of carbonate rock of Cambrian Xiannüdong Formation in Micangshan area, northern Sichuan Basin [J]. Lithologic Reservoirs, 2025, 37(4): 50-62.
[9] ZHENG Xin, JIANG Donghui, LI Kun, ZHUANG Jianjian, ZHANG Chuanyun, YANG Chao, YUAN Zhongpeng, WANG Jiaqi. Sand control patterns of fault-landforms-sedimentary slope break and their significance for oil and gas exploration: A case study of the northern section of Baochu slope zone in Xihu Sag,East China Sea Basin [J]. Lithologic Reservoirs, 2025, 37(4): 95-104.
[10] ZHANG Ziwei, LIU Junqiao, LI Jiaona, HU Xinlei, WU Hao, LYU Yanfang, JIANG Fei. Fault development characteristics and controlling on hydrocarbon accumulation of medium-shallow layers in Yuzijing area of southern Songliao Basin,NE China [J]. Lithologic Reservoirs, 2025, 37(4): 105-114.
[11] WANG Yonggang, DU Guanghong, HE Run, QU Chang, SHE Yuwei, HUANG Cheng. Geophysical identification and distribution prediction of weathered crust reservoirs in Lower Paleozoic of Longdong area,Ordos Basin [J]. Lithologic Reservoirs, 2025, 37(4): 127-135.
[12] LIU Xiumei, XIN Renchen, LIU Hao. Paleogeomorphological characteristics of Oligocene Dongying period in southern Liaozhong Sag and its control on sedimentary system [J]. Lithologic Reservoirs, 2025, 37(4): 159-168.
[13] HU Changhao, PEI Jiaxue, CAI Guogang. Hydrocarbon continuous accumulation conditions of Cretaceous Jiufotang Formation in Ludong Sag,Kailu Basin [J]. Lithologic Reservoirs, 2025, 37(3): 1-12.
[14] RAN Yixuan, DU Changpeng, ZHANG Jingjing. Accumulation condition of “below the source rock” tight oil in the 4th member of Cretaceous Quantou Formation in Putaohua Oilfield, northern Songliao Basin [J]. Lithologic Reservoirs, 2025, 37(3): 47-58.
[15] DENG Gaoshan, DONG Xuemei, YU Haitao, ZHANG Jie, YUE Xiwei, REN Junmin, JIANG Tao. Hydrocarbon accumulation conditions and exploration potential of Triassic Baikouquan Formation in Shawan Sag,Junggar Basin [J]. Lithologic Reservoirs, 2025, 37(3): 59-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
TRENDMD: