Lithologic Reservoirs ›› 2018, Vol. 30 ›› Issue (4): 113-119.doi: 10.12108/yxyqc.20180413

Previous Articles     Next Articles

Calculation of phase behavior for CO2-water mixtures using CPA EoS

TU Hanmin1, GUO Ping1, JIA Na2, WANG Zhouhua1, WANG Qian3   

  1. 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China;
    2. Program of Petroleum Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina S4S0A2, Canada;
    3. CNOOC China Co. Ltd. Tianjing Company, Tianjing 300452, China
  • Received:2018-01-16 Revised:2018-03-31 Online:2018-07-21 Published:2018-07-21

Abstract: Carbon dioxide(CO2)is an acid gas, and its thermodynamic properties are vital to numerous processes in the oil and gas. Water always coexists with hydrocarbons in petroleum reservoirs, and the presence of brine may reduce the amount of gas to be mixed with hydrocarbons. This effect increases with increasing pressure and the amount of aqueous phase(while decreases with the decreasing of salinity). Hence, the understanding of the thermodynamics of CO2-water mixtures is quite crucial for the rational design and operation of many processes. The characteristics of phase behavior for CO2-water mixtures were studied by using Cubic-Plus-Association (CPA)Equation of State(EoS)to combine with the CR-1 mixing rule to assess the mutual solubility of CO2 and water. CO2 can be treated in three different ways:(1)as a non-associating molecule; (2)as an associating molecule that can be cross-associate with water(solvation);(3)as a self and cross associating molecule. As water is considered as an associating molecule,it has three association schemes of 2 B, 3 B and 4 C. The performance of CPA EoS using different interaction models was evaluated and discussed at three temperatures of 308 K, 373 K and 473 K, and also was compared to various recent published investigations. It demonstrates the complicated phase behavior of CO2 and water, especially when they are close to the critical point of CO2, where thermodynamic properties sudden changed. The results show that good agreement with experimental data can be achieved when CO2 is considered as a non-associating molecule and 4 C association scheme is considered in the calculation model.

Key words: water drive gas reservoir, water invasion identification, water production laws, controlling factors, water size, Xihu Sag

CLC Number: 

  • TE357.45
[1] 杨红, 王宏, 南宇峰, 等.油藏CO2驱油提高采收率适宜性评价.岩性油气藏, 2017, 29(3):140-146. YANG H,WANG H,NAN Y F,et al. Suitability evaluation of enhanced oil recovery by CO2 flooding. Lithologic Reservoirs, 2017, 29(3):140-146.
[2] 郭平, 许清华, 孙振, 等.天然气藏CO2驱及地质埋存技术研究进展.岩性油气藏, 2016, 28(3):6-11. GUO P, XU Q H, SUN Z, et al. Research progress of CO2 flooding and geological storage in gas reservoirs. Lithologic Reservoirs, 2016, 28(3):6-11.
[3] 陈祖华, 汤勇, 王海妹, 等.CO2驱开发后期防气窜综合治理方法研究.岩性油气藏, 2014, 26(5):102-106. CHEN Z H, TANG Y, WANG H M, et al. Comprehensive treatment of gas channeling at the later stage of CO2 flooding. Lithologic Reservoirs, 2014, 26(5):102-106.
[4] 李友全, 韩秀虹, 阎燕, 等.低渗透油藏CO2吞吐压力响应曲线分析. 岩性油气藏, 2017, 29(6):119-127. LI Y Q,HAN X H,YAN Y, et al. Pressure transient analysis on CO2 huff and puff in low permeability reservoir. Lithologic Reservoirs, 2017, 29(6):119-127.
[5] 陆正元, 孙冬华, 黎华继, 等.气藏凝析水引起的地层水矿化度淡化问题——以四川盆地新场气田须二段气藏为例.天然气工业, 2015, 35(7):60-65. LU Z Y, SUN D H, LI H J, et al. Formation water desalination caused by condensate water of gas reservoirs:a case study of the 2nd member of Xujiahe Formation in the Xinchang Gas Field, Sichuan Basin. Natural Gas Industry, 2015, 35(7):60-65.
[6] 王长权, 汤勇, 杜志敏, 等.含水凝析气相态特征及非平衡压降过程产液特征.石油学报, 2013, 34(4):740-746. WANG C Q, TANG Y, DU Z M, et al. Phase behaviors of condensate gas with vaporous water and liquid production characteristics in a non-equilibrium pressure drop process. Acta Petrolei Sinica, 2013, 34(4):740-746.
[7] 熊钰, 张烈辉, 史云清, 等.含水气贫凝析气体系的相态及渗流特征.天然气工业, 2006, 26(4):83-85. XIONG Y, ZHANG L H, SHI Y Q, et al. Phase behaviors and percolation characteristics of lean condensate gas system with water vapor. Natural Gas Industry, 2006, 26(4):83-85.
[8] 石德佩, 孙雷, 刘建仪, 等.高温高压含水凝析气相态特征研究.天然气工业, 2006, 26(3):95-97. SHI D P, SUN L, LIU J Y, et al. Phase behavior of wet condensate gas at high temperature and pressure. Natural Gas Industry, 2006, 26(3):95-97.
[9] 石德佩, 孙雷, 李东平, 等.关于烃-水体系相平衡研究的现状及新进展.西南石油学院学报, 2005, 27(3):49-53. SHI D P, SUN L, LI D P, et al. The domestic and abroad situation and the latest development of hydrocarbon-water phase equilibria. Journal of Southwest Petroleum Institute, 2005, 27(3):49-53.
[10] 贾英, 严谨, 孙雷, 等.松南火山岩气藏流体相态特征研究.西南石油大学学报自然科学版, 2015, 37(5):91-98. JIA Y, YAN J, SUN L, et al. Research on phase behavior of high CO2 fluid of Songnan volcanic reservoir. Journal of Southwest Petroleum University:Science & Technology Edition, 2015, 37(5):91-98.
[11] 叶安平, 郭平, 王绍平, 等.利用PR状态方程确定CO2驱最小混相压力.岩性油气藏, 2012, 24(6):125-128. YE A P, GUO P, WANG S P, et al. Determination of minimum miscibility pressure for CO2 flooding by using PR equation of state. Lithologic Reservoirs, 2012, 24(6):125-128.
[12] KONTOGEORGIS G M, MICHELSEN M L, FOLAS G K, et al. Ten years with the CPA(Cubic-Plus-Association)equation of state. Part 1. Pure compounds and self-associating systems. Industrial & Engineering Chemistry Research, 2006, 45(14):4855-4868.
[13] KONTOGEORGIS G M, VOUTSAS E C, YAKOUMIS I V, et al. An equation of state for associating fluids. Industrial & Engineering Chemistry Research, 1996, 35(11):4310-4318.
[14] MICHELSEN M L, HENDRIKS E M. Physical properties from association models. Fluid Phase Equilibria, 2001, 180(1/2):165-174.
[15] BUTTON J K, GUBBINS K E. SAFT prediction of vapor-liquid equilibria of mixtures containing carbon dioxide and aqueous monoethanolamine or diethanolamine. Fluid Phase Equilibria, 1999, s158-160(5):175-181.
[16] TSIVINTZELIS I, KONTOGEORGIS G M, MICHELSEN M L, et al. Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part Ⅱ:Binary mixtures with CO2. Fluid Phase Equilibria, 2011, 306(306):38-56.
[17] VOUTSAS E, PERAKIS C, PAPPA G, et al. An evaluation of the performance of the Cubic-Plus-Association equation of state in mixtures of non-polar,polar and associating compounds:towards a single model for non-polymeric systems. Fluid Phase Equilibria, 2007, 261(1/2):343-350.
[18] PAPPA G D, PERAKIS C, TSIMPANOGIANNIS I N, et al. Thermodynamic modeling of the vapor-liquid equilibrium of the CO2/H2O mixture. Fluid Phase Equilibria, 2009, 284(1):56-63.
[19] PERAKIS C, VOUTSAS E, MAGOULAS K, et al. Thermodynamic modeling of the vapor-liquid equilibrium of the water/ethanol/CO2 system. Fluid Phase Equilibria, 2006, 243(1/2):142-150.
[20] OLIVEIRA M B, QUEIMADA A J, KONTOGEORGIS G M, et al. Evaluation of the CO2, behavior in binary mixtures with alkanes,alcohols,acids and esters using the Cubic-Plus-Association Equation of State. Journal of Supercritical Fluids, 2011, 55(3):876-892.
[21] KONTOGEORGIS G M, FOLAS G K, MURO-SUÑÉ N, et al. Solvation phenomena in association theories with applications to oil & gas and chemical industries. Oil & Gas Science and Technology, 2008, 63(3):305-319.
[22] DERAWI S O, KONTOGEORGIS G M, STENBY E H, et al. Extension of the Cubic-Plus-Association equation of state to glycolwater cross-associating systems. Industrial & Engineering Chemistry Research, 2003, 42(7):1470-1477.
[23] KONTOGEORGIS G M, YAKOUMIS I V, MEIJER H, et al. Multicomponent phase equilibrium calculations for water-methanol-alkane mixtures. Fluid Phase Equilibria, 1999, 158-160(5):201-209.
[24] ZIRRAHI M, HASSANZADEH H, ABEDI J. Prediction of water solubility in petroleum fractions and heavy crudes using cubicplus-association equation of state(CPA-EOS). Fuel, 2015, 159:894-899.
[25] KARIMI S, RAEISSI S, FLORUSSE L J, et al. High-pressure phase behavior of methanol + ethylene:Experimental measurements and CPA modeling. Journal of Supercritical Fluids, 2014, 92:47-54.
[26] SOAVE G. Equilibrium constants from a modified Redlich-Kwong equation of state. Chemical Engineering Science, 1972, 27(6):1197-1203.
[27] WERTHEIM M S. Thermodynamic perturbation theory of polymerization. The Journal of Chemical Physics, 1987, 87(12):7323-7331.
[28] FOLAS G K, KONTOGEORGIS G M, MICHELSEN M L, et al. Application of the cubic-plus-association(CPA)equation of state to complex mixtures with aromatic hydrocarbons. Industrial & Engineering Chemistry Research, 2006, 45(4):1527-1538.
[29] HUANG S H, RADOSZ M. Equation of state for small, large, polydisperse, and associating molecules:Extension to fluid mixtures. Industrial & Engineering Chemistry Research, 1990, 30(8):1994-2005.
[30] KARLSTROM G, WENNERSTROM H, JONSSON B, et al. Intramolecular hydrogen bond. Ab initio MO calculations on the enol tautomer of malondialdehyde. Journal of the American Chemical Society, 1975, 97(15):4188-4192.
[31] YAKOUMIS I V, KONTOGEORGIS G M, VOUTSAS E C, et al. Prediction of phase equilibria in binary aqueous systems containing alkanes, cycloalkanes, and alkenes with the cubic-plusassociation equation of state. Industrial & Engineering Chemistry Research, 1998, 37(10):4175-4182.
[32] TAKENOUCHI S, KENNEDY G C. The binary system H2O-CO2 at high temperatures and pressures. American Journal of Science, 1964, 262(9):1055-1074.
[33] NIGHSWANDER J A, KALOGERAKIS N, MEHROTRA A K. Solubilities of carbon dioxide in water and 1 wt.% sodium chloride solution at pressures up to 10 MPa and temperatures from 80 to 200 degree. Journal of Chemical & Engineering Data, 1989, 34(3):355-360.
[34] ZAWISZA A, MALESINSKA B. Solubility of carbon dioxide in liquid water and of water in gaseous carbon dioxide in the range 0.2-5 MPa and at temperatures up to 473 K. Journal of Chemical & Engineering Data, 1981, 26(4):73-74.
[35] WIEBE R, GADDY V L. The Solubility in water of carbon dioxide at 50, 75 and 100°, at pressures to 700 atmospheres. Journal of the American Chemical Society, 1939, 61(2):315-318.
[36] VALTZ A, CHAPOY A, COQUELET C, et al. Vapour-liquid equilibria in the carbon dioxide-water system,measurement and modelling from 278.2 to 318.2 K. Fluid Phase Equilibria, 2004, 226(3):333-344.
[37] OLIVEIRA M B, COUTINHO J A P, QUEIMADA A J. Mutual solubility of hydrocarbons and water with the CPA EoS. Fluid Phase Equilibria, 2007, 258(1):58-66.
[1] LI Shengqian, ZENG Jianhui, LIU Yazhou, LI Miao, JIAO Panpan. Reservoir diagenesis and pore evolution of Paleogene Pinghu Formation in Kongqueting area of Xihu Sag,East China Sea Basin [J]. Lithologic Reservoirs, 2023, 35(5): 49-61.
[2] LUO Qun, ZHANG Zeyuan, YUAN Zhenzhu, XU Qian, QIN Wei. Connotation,evaluation and optimization of tight oil sweet spots: A case study of Cretaceous Xiagou Formation in Qingxi Sag,Jiuquan Basin [J]. Lithologic Reservoirs, 2022, 34(4): 1-12.
[3] MA Zhengwu, GUAN Dayong, WANG Qiming, LIU Yaojun, LI Xiaohui. Sedimentary characteristics and controlling factors of sublacustrine fans of the third member of Paleogene Dongying Formation in Liaozhong Sag [J]. Lithologic Reservoirs, 2022, 34(2): 131-140.
[4] ZHANG Menglin, LI Guoqin, HE Jia, HENG De. Main controlling factors of Ordovician Wufeng-Silurian Longmaxi shale gas enrichment in Tiangongtang structure, southwestern margin of Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(2): 141-151.
[5] XU Shiyu, LIN Yi, ZENG Yiyang, ZHAO Chunni, HE Kailai, YANG Jing, LI Yang, ZHU Yi. Gas-water distribution characteristics and main controlling factors of Lower Permian Qixia Formation in Shuangyushi area, NW Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(1): 63-72.
[6] XIONG Jiabei, HE Dengfa. Distribution characteristics and controlling factors of global giant carbonate stratigraphic-lithologic oil and gas fields [J]. Lithologic Reservoirs, 2022, 34(1): 187-200.
[7] SHAO Xiaozhou, WANG Miaomiao, QI Yalin, HE Tongtong, ZHANG Xiaolei, PANG Jinlian, GUO Yixuan. Characteristics and main controlling factors of Chang 8 reservoir in northern Pingliang area,Ordos Basin [J]. Lithologic Reservoirs, 2021, 33(6): 59-69.
[8] ZHAO Xiaomeng, GUO Feng, PENG Xiaoxia, ZHANG Cuiping, GUO Ling, SHI Yuxiang. Reservoir characteristics and main controlling factors of Yan 10 sandy braided fluvial facies in Anbian area,Ordos Basin [J]. Lithologic Reservoirs, 2021, 33(6): 124-134.
[9] ZHAO Jing, HUANG Zhilong, LIU Chunfeng, LI Tianjun, JIANG Yiming, TAN Sizhe, HUANG Jun, GUO Xiaobo. Identification and distribution characteristics of coal-bearing source rocks in Pingbei area,Xihu Sag [J]. Lithologic Reservoirs, 2021, 33(5): 95-106.
[10] YIN Xingping, JIANG Yuqiang, FU Yonghong, ZHANG Xuemei, LEI Zhian, CHEN Chao, ZHANG Haijie. Shale lithofacies and reservoir characteristics of Wufeng Formation-lower Long 1 submember of Longmaxi Formation in western Chongqing [J]. Lithologic Reservoirs, 2021, 33(4): 41-51.
[11] ZHANG Zhiheng, TIAN Jijun, HAN Changcheng, ZHANG Wenwen, DENG Shouwei, SUN Guoxiang. Reservoir characteristics and main controlling factors of Lucaogou Formation in Jimsar Sag,Jungger Basin [J]. Lithologic Reservoirs, 2021, 33(2): 116-126.
[12] TIAN Qinghua, LIU Jun, ZHANG Chen, WANG Wensheng, HUANG Dan. Characteristics and controlling factors of Lower Paleozoic reservoir in Sulige Gas Field [J]. Lithologic Reservoirs, 2020, 32(2): 33-42.
[13] DENG Chenggang, LI Jiangtao, CHAI Xiaoying, CHEN Fenjun, YANG Xiyan, WANG Haicheng, LIAN Yunxiao, TU Jiasha. Early identification methods of water invasion in weak water drive gas reservoirs in Sebei gas field,Qaidam Basin [J]. Lithologic Reservoirs, 2020, 32(1): 128-134.
[14] BIAN Xiaobing, HOU Lei, JIANG Tingxue, GAO Dongwei, ZHANG Chi. Influencing factors of fracture geometry in deep shale gas wells [J]. Lithologic Reservoirs, 2019, 31(6): 161-168.
[15] SU Penghui, XIA Zhaohui, LIU Lingli, DUAN Lijiang, WANG Jianjun, XIAO Wenjie. Main controlling factors of productivity and reasonable development methods of low-rank coalbed methane in block M of Australia [J]. Lithologic Reservoirs, 2019, 31(5): 121-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Sijing,HUANG Peipei,WANG Qingdong,LIU Haonian,WU Meng,ZOU Mingliang. The significance of cementation in porosity preservation in deep-buried sandstones[J]. Lithologic Reservoirs, 2007, 19(3): 7 -13 .
[2] LIU Zhen,CHEN Yanpeng,ZHAO Yang,HAO Qi,XU Xiaoming,CHANG Mai. Distribution and controlling factors of hydrocarbon reservoirs in continental fault basins[J]. Lithologic Reservoirs, 2007, 19(2): 121 -127 .
[3] DING Chao,GUO Lan,YAN Jifu. Forming conditions of Chang 6 reservoir in Anding area of Zichang Oilfield[J]. Lithologic Reservoirs, 2009, 21(1): 46 -50 .
[4] LI Yanshan,ZHANG Zhansong,ZHANG Chaomo,CHEN Peng. Application of mercury injection data to Chang 6 reservoir classification in Changqing area[J]. Lithologic Reservoirs, 2009, 21(2): 91 -93 .
[5] LUO Peng,LI Guorong,SHI Zejin,ZHOU Dazhi,TANG Hongwei,ZHANG Deming. Analysis of sequence stratigraphy and sedimentary facies of M aokou Formation in southeastern Sichuan[J]. Lithologic Reservoirs, 2010, 22(2): 74 -78 .
[6] ZUO Guoping, TU Xiaolong, XIA Jiufeng. Study on volcanic reservoir types in Subei exploration area[J]. Lithologic Reservoirs, 2012, 24(2): 37 -41 .
[7] WANG Feiyu. Method to improve producing degree of thermal recovery horizontal wells and its application[J]. Lithologic Reservoirs, 2010, 22(Z1): 100 -103 .
[8] YUAN Yunfeng,CAI Ye,FAN Zuochun,JIANG Yiyang,QIN Qirong, JIANG Qingping. Fracture characteristics of Carboniferous volcanic reservoirs in Hongche fault belt of Junggar Basin[J]. Lithologic Reservoirs, 2011, 23(1): 47 -51 .
[9] YUAN Jianying, FU Suotang, CAO Zhenglin, YAN Cunfeng,ZHANG Shuichang, MA Dade. Multi-source hydrocarbon generation and accumulation of plateau multiple petroleum system in Qaidam Basin[J]. Lithologic Reservoirs, 2011, 23(3): 7 -14 .
[10] SHI Zhanzhan, HE Zhenhua, WEN Xiaotao, TANG Xiangrong. Reservoir detection based on EMD and GHT[J]. Lithologic Reservoirs, 2011, 23(3): 102 -105 .
TRENDMD: