Lithologic Reservoirs ›› 2018, Vol. 30 ›› Issue (6): 76-82.doi: 10.12108/yxyqc.20180609
Previous Articles Next Articles
DENG Haoyang1,2, SIMA Liqiang1,2, WU Wen3, LIU Fanglin4, WANG Xin5, WANG Chao6, YANG Guodong7
CLC Number:
[1] 黄静,李琦,康元欣, 等. 致密砂岩气储层微观孔隙及成岩作用特征——以川西新场地区须五段为例.岩性油气藏, 2016, 28(2):24-32. HUANG J, LI Q, KANG Y X, et al. Characteristics of micropores and diagenesis of tight sandstone reservoirs:a case study from the fifth member of Xujiahe Formation in Xinchang area, Western Sichuan Depression. Lithologic Reservoirs, 2016, 28(2):24-32. [2] 王猛,曾明,陈鸿傲, 等. 储层致密化影响因素分析与有利成岩相带预测——以马岭油田长8油层组砂岩储层为例.岩性油气藏, 2017, 29(1):59-70. WANG M, ZENG M, CHEN H A, et al. Influencing factors of tight reservoirs and favorable diagenetic facies:a case study of Chang 8 reservoir of the Upper Triassic Yanchang Formation in Maling Oilfield, Ordos Basin. Lithologic Reservoirs, 2017, 29(1):59-70. [3] 李闽, 王浩, 陈猛. 致密砂岩储层可动流体分布及影响因素研究——以吉木萨尔凹陷芦草沟组为例. 岩性油气藏, 2018, 30(1):140-149. LI M, WANG H, CHEN M. Distribution characteristics and influencing factors of movable fluid in tight sandstone reservoirs:a case study of Lucaogou Formation in Jimsar Sag, NW China. Lithologic Reservoirs, 2018, 30(1):140-149. [4] 楚翠金, 夏志林, 杨志强. 延川南区块致密砂岩气测井识别与评价技术. 岩性油气藏,2017,29(2):131-138. CHU C J, XIA Z L, YANG Z Q. Logging identification and evaluation of tight sandstone gas in the southern Yanchuan block. Lithologic Reservoirs, 2017, 29(2):131-138. [5] 张宪国, 张涛, 林承焰.基于孔隙分形特征的低渗透储层孔隙结构评价. 岩性油气藏, 2013, 25(6):40-45. ZHANG X G, ZHANG T, LIN C Y. Pore structure evaluation of low permeability reservoir based on pore fractal features. Lithologic Reservoirs, 2013, 25(6):40-45. [6] 陈志强, 吴思源, 白蓉, 等.基于流动单元的致密砂岩气储层渗透率测井评价——以川中广安地区须家河组为例. 岩性油气藏, 2017, 29(6):76-83. CHEN Z Q, WU S Y, BAI R, et al. Logging evaluation for permeability of tight sandstone gas reservoirs based on flow unit classification:a case from Xujiahe Formation in Guang'an area, central Sichuan Basin. Lithologic Reservoirs, 2017, 29(6):76-83. [7] KATZ A J, THOMPSON A H. Fractal sandstone pores:implication for conductivity and pore formation. Physical Review Letters, 1985, 54(12):1325-1332. [8] WONG P Z, HOWARD J. Surface roughening and the fractal nature of rocks. Physical Review Letters, 1986, 57(5):637-640. [9] PFEIFER P, AVNIR D. Chemistry in noninteger dimensions between two and three. The Journal of Chemical Physics, 1983, 79(7):3558-3571. [10] MANDELBROT B. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science, 1967, 156(3775):636-638. [11] 闫建平, 何旭, 耿斌, 等.基于分形理论的低渗透砂岩储层孔隙结构评价方法. 测井技术, 2017, 41(3):345-352. YAN J P, HE X, GENG B, et al. Models based on fractal theory to assess pore structure of low permeability sand reservoirs. Well Logging Technology, 2017, 41(3):345-352. [12] 吴浩, 刘锐娥, 纪友亮, 等.致密气储层孔喉分形特征及其与渗流的关系——以鄂尔多斯盆地下石盒子组盒8段为例. 沉积学报, 2017, 35(1):151-162. WU H, LIU R E, JI Y L, et al. Fractal characteristics of porethroat of tight gas reservoirs and its relation with percolation:a case from He 8 member of the Permian Xiashihezi Formation in Ordos Basin. Acta Sedimentologica Sinica, 2017, 35(1):151-162. [13] CLARKSON C R, FREEMAN M, HE L, et al. Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis. Fuel, 2012, 95(1):371-385. [14] 任晓霞, 李爱芬, 王永政, 等.致密砂岩储层孔隙结构及其对渗流的影响——以鄂尔多斯盆地马岭油田长8储层为例. 石油与天然气地质, 2015, 36(5):774-779. REN X X, LI A F, WANG Y Z, et al. Pore structure of tight sand reservoir and its influence on percolation-Taking the Chang 8 reservoir in Maling oilfield in Ordos Bain as an example. Oil & Gas Geology, 2015, 36(5):774-779. [15] LI A, DING W, HE J, et al. Investigation of pore structure and fractal characteristics of organic-rich shale reservoirs:a case study of Lower Cambrian Qiongzhusi formation in Malong block of eastern Yunnan Province,South China. Marine & Petroleum Geology, 2016, 70:46-57. [16] CAO T, SONG Z, WANG S, et al. Characterization of pore structure and fractal dimension of Paleozoic shales from the northeastern Sichuan Basin, China. Journal of Natural Gas Science & Engineering, 2016, 35:882-895. [17] ZHANG Z Y, WELLER A. Fractal dimension of pore-space geometry of an Eocene sandstone formation. Geophysics, 2014, 79(6):377-387. [18] SHAO X, PANG X, LI H, et al. Fractal analysis of pore network in tight gas sandstones using NMR method:a case study from the Ordos Basin,China. Energy & Fuels, 2017, 31(10):1-11. [19] ZHOU L, KANG Z. Fractal characterization of pores in shales using NMR:a case study from the Lower Cambrian Niutitang Formation in the Middle Yangtze Platform, Southwest China. Journal of Natural Gas Science & Engineering, 2016, 35:860-872. [20] 何雨丹, 毛志强, 肖立志, 等.核磁共振T2分布评价岩石孔径分布的改进方法. 地球物理学报, 2005, 48(2):373-378. HE Y D, MAO Z Q, XIAO L Z, et al. An improved method of using NMR T2 distribution to evaluate pore size distribution. Chinese Journal of Geophysics, 2005, 48(2):373-378. [21] 何雨丹, 毛志强, 肖立志, 等.利用核磁共振T2分布构造毛管压力曲线的新方法. 吉林大学学报(地球科学版), 2005, 35(2):177-181. HE Y D, MAO Z Q, XIAO L Z, et al. A new method to obtain capillary pressure curve using NMR T2 distribution. Journal of Jilin University(Earth Science Edition), 2005, 35(2):177-181. [22] 李艳, 范宜仁, 邓少贵, 等. 核磁共振岩心实验研究储层孔隙结构.勘探地球物理进展, 2008, 31(2):129-132. LI Y, FAN Y R, DENG S G, et al. the pore structure research of cores based on NMR experiments. Progress in Exploration Geophysics, 2008, 31(2):129-132. [23] 国家发展和改革委员会. SY/T 5346-2005. 岩石毛管压力曲线的测定.北京:石油工业出版社, 2005:1. National Development and Reform Commission. SY/T 5346-2005. Rock capillary pressure measurement. Beijing:Petroleum Industry Press, 2005:1. [24] 杨海, 孙卫, 明红霞, 等.分形几何在致密砂岩储层微观孔隙结构研究中的应用——以苏里格气田东南部上石盒子组盒8段为例. 石油地质与工程, 2015, 29(6):103-107. YANG H, SUN W, MING H X, et al. The application of fractal theory in the research of micro pore structure of tight sandstone:a case from He 8 member of the southeast area of Sulige Gas Field. Petroleum Geology and Engineering, 2015, 29(6):103-107. [25] 贺承祖, 华明琪.储层孔隙结构的分形几何描述. 石油与天然气地质, 1998, 19(1):15-23. HE C Z, HUA M Q. Fractal geometry description of reservoir pore structure. Oil & Gas Geology, 1998, 19(1):15-23. [26] 司马立强, 杨国栋, 吴丰, 等. 准噶尔盆地玛湖凹陷百口泉组致密砂砾岩孔隙分形特征及影响因素探讨.测井技术, 2016, 40(5):609-616. SIMA L Q, YANG G D, WU F,et al. Fractal feature about the pore structure and controlling factor in tight glutenite reservoir in Baikouquan formation of Mahu depression in Junggar Basin. Well Logging Technology, 2016, 40(5):609-616. [27] 葛小波, 李吉君, 卢双舫, 等.基于分形理论的致密砂岩储层微观孔隙结构表征——以冀中坳陷致密砂岩储层为例. 岩性油气藏, 2017, 29(5):106-112. GE X B, LI J J, LU S F, et al. Fractal characteristics of tight sandstone reservoir using mercury intrusion capillary pressure:a case of tight sandstone reservoir in Jizhong Depression. Lithologic Reservoirs, 2017, 29(5):106-112. [28] YAN J P, HE X, GENG B, et al. Nuclear magnetic resonance T2 spectrum:Multifractal characteristics and pore structure evaluation. Applied Geophysics, 2017, 14(2):205-215. [29] YAO Y, LIU D, TANG D, et al. Fractal characterization of adsorption-pores of coals from North China:an investigation on CH 4 adsorption capacity of coals. International Journal of Coal Geology, 2008, 73(1):27-42. [30] YU B M, LI J H. A geometry model for tortuosity of flow path in porous media. Chinese Physics Letters, 2004, 21(8):1569-1571. [31] 郑斌, 李菊花. 基于Kozeny-Carman方程的渗透率分形模型. 天然气地球科学, 2015, 26(1):193-198. ZHENG B, LI J H. A new fractal permeability model for porous media based on kozeny-carman equation. Natural Gas Geoscience, 2015, 26(1):193-198. [32] 白瑞婷, 李治平, 南珺祥, 等.考虑启动压力梯度的致密砂岩储层渗透率分形模型. 天然气地球科学, 2016, 27(1):142-148. BAI R T, LI Z P, NAN J X, et al. The fractal permeability model in tight sand reservoir accounts for start-up gradient. Natural Gas Geoscience, 2016, 27(1):142-148. [33] 尹帅, 谢润成, 丁文龙, 等.常规及非常规储层岩石分形特征对渗透率的影响. 岩性油气藏, 2017, 29(4):81-90. YIN S, XIE R C, DING W L, et al. Influences of fractal characteristics of reservoir rocks on permeability. Lithologic Reservoirs, 2017, 29(4):81-90. [34] 李留仁, 袁士义, 胡永乐.分形多孔介质渗透率与孔隙度理论关系模型. 西安石油大学学报(自然科学版), 2010, 25(3):49-51. LI L R, YUAN S Y, HU Y L. A new model for describing the relationship between the permeability and the porosity of fractal porous media. Journal of Xi'an Shiyou University(Natural Science Edition), 2010, 25(3):49-51. |
|