Lithologic Reservoirs ›› 2013, Vol. 25 ›› Issue (3): 119-122.doi: 10.3969/j.issn.1673-8926.2013.03.021

Previous Articles     Next Articles

1. Research Institute of Petroleum Exploration and Development, Tianjin Branch of CNOOC, Tianjin 300452, China; 2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China

WANG Dawei1, LI Xiaoping2   

  1. 1. Research Institute of Petroleum Exploration and Development, Tianjin Branch of CNOOC, Tianjin 300452, China; 2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
  • Online:2013-06-01 Published:2013-06-01

Abstract:

In general case, the actual finishing drilling horizontal well is not absolutely horizontal, the well trajectory is undulant as wave. When the wellbore bending degree is big, gravitational potential energy causes the bigger difference of inflow performance than the ideal horizontal wells. Therefore, it is necessary to do in-depth analysis of the horizontal well inflow performance. The horizontal well with curved trajectory was approximately regarded as a continuous structure which is composed of a series of slant wells. By using the reservoir-wellbore flow coupling semi-analytical model, this paper studied the effects of well trajectory bending on horizontal well inflow performance, and compared the calculation results with the multi-branch horizontal wells. The result shows that well trajectory bending will affect the productivity of horizontal wells and wellbore pressure distribution, the radial inflow curves of horizontal wells and multi-branch horizontal wells have a big difference with ideal situation, and the shape fluctuates with well trajectory changes.

Key words: sedimentary microfacies, facies—controlled modeling technology, petrophysical model, Jia 2 member, MOXi Gas Field, central Sichuan

[1] Bacarreza L,Hornabrook C. The snaking wells in Champion West,Offshore Brunei:Best practices for ERD well construction [R].SPE 114550,2008.
[2] Johan A H,Schrader K. Combination of snake well design & smart completions:Key enablers for Champion West development [R].SPE 88524,2004.
[3] Kamkom R,Zhu D,Bond A. Predicting undulating-well performance[R]. SPE 109761, 2009.
[4] Bond A,Zhu D,KamkomR. The effect of well trajectory on horizontal well performance[R]. SPE 104183,2006.
[5] 戚志林,杜志敏,汤勇,等.蛇曲井稳态产能计算模型[J].石油勘探与开发,2006,33(1):87-90.
[6] 王大为,李晓平.井眼轨迹对水平井产能的影响[J].天然气地球科学,2011,22(5):926-930.
[7] 饶良玉,吴向红,李贤兵,等.苏丹层状边水油藏水平井开发效果评价与对策研究[J].岩性油气藏,2011,23(5):107-110.
[8] 帅媛媛,王晓东,孙挺,等.非牛顿幂律流体水平井产能分析方法[J].岩性油气藏,2007,19(3):123-125.
[9] 李传亮.底水油藏不适合采用水平井[J].岩性油气藏,2007,19(3):120-122.
[10] 刘想平,郭呈柱,蒋志祥,等.油层中渗流与水平井筒内流动的耦合模型[J].石油学报,1999,20(3):82-86.
[11] 陈要辉,阎铁,毕雪亮,等.油藏斜井三维势分布理论研究[J].石油学报,2003,24(5):90-93.
[12] 刘想平,张兆顺,刘翔鹗,等.水平井筒内与渗流耦合的流动压降计算模型[J].西南石油学院学报:自然科学版,2000,22(2):36-39.
[13] 陈要辉,阎铁,刘颖,等.裸眼完井分支水平井井筒压力分布理论研究[J].钻采工艺,2002,27(1):1-3.
[14] 黄世军,程林松,李秀生,等.多分支水平井压力系统分析模型[J].石油学报,2003,24(6):81-86.
[15] 曾晓晶,同登科.分支水平井稳态渗流理论及最优井长[J].石油学报,2011,32(5):882-886.
[16] 刘想平,张兆顺,崔桂香,等.鱼骨型多分支井向井流动态关系[J].石油学报,2000,21(6):57-60.
[1] LU Keliang, WU Kangjun, LI Zhijun, SUN Yonghe, XU Shaohua, LIANG Feng, LIU Lu, LI Shuang. Characteristics and evolution model of hydrocarbon accumulation of Cambrian Longwangmiao Formation in the north slope of central Sichuan paleo-uplift [J]. Lithologic Reservoirs, 2024, 36(4): 159-168.
[2] XIA Maolong, ZHANG Benjian, ZENG Yiyang, JIA Song, ZHAO Chunni, FENG Mingyou, LI Yong, SHANG Junxin. Main controlling factors and distribution of reservoirs of the second member of Sinian Dengying Formation in Penglai gas field,central Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(3): 50-60.
[3] HU Wangshui, GAO Feiyue, LI Ming, GUO Zhijie, WANG Shichao, LI Xiangming, LI Shengming, JIE Qiong. Fine characterization of reservoir units of Paleogene Shahejie Formation in Langgu Sag,Bohai Bay Basin [J]. Lithologic Reservoirs, 2023, 35(5): 92-99.
[4] WANG Liang, SU Shute, MA Zike, PU Jing, YAO Linfang, LIU Yu, LUO Yang. Sedimentary characteristics of Cambrian Canglangpu Formation in central Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(6): 19-31.
[5] ZHOU Hongfei, DAI Xin, JIA Min, ZHANG Rui, LI Guohui, LI Nan, YANG Qiang, BAI Rong. Hydrocarbon accumulation characteristics of the second member of Sinian Dengying Formation in the north slope of central Sichuan paleo-uplift [J]. Lithologic Reservoirs, 2022, 34(5): 130-138.
[6] RUAN Yunbo, ZHOU Gang, HUO Fei, SUN Haofei, GUO Pei, LUO Tao, JIANG Huachuan, WEN Huaguo. Source-reservoir characteristics and configuration of the third member of Middle Triassic Leikoupo Formation in central Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(5): 139-151.
[7] KANG Jiahao, WANG Xingzhi, XIE Shengyang, ZENG Deming, DU Yao, ZHANG Rui, ZHANG Shaomin, LI Yang. Lithofacies types and reservoir characteristics of shales of Jurassic Da'anzhai member in central Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(4): 53-65.
[8] LI Luping, LIANG Jintong, LIU Sibing, GUO Yanbo, LI Kunyu, HE Yuan, JIN Jiuxiang. Diagenesis and pore evolution of dolomite reservoirs of Cambrian Xixiangchi Formation in central Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(3): 39-48.
[9] HUANG Yarui, YANG Jianping, LU Huidong, LI Yuzhi, HUANG Zhijia, DANG Pengsheng, FANG Ping, MU Yingshun. Sedimentary characteristics of gravity flow of middle Es32 member in Yingbei area, Dongying Sag [J]. Lithologic Reservoirs, 2022, 34(1): 14-23.
[10] ZHANG Wenwen, HAN Changcheng, TIAN Jijun, ZHANG Zhiheng, ZHANG Nan, LI Zhengqiang. Sequence stratigraphy division and evolutionary features of Permian Lucaogou Formation in Jimsar Sag [J]. Lithologic Reservoirs, 2021, 33(5): 45-58.
[11] HE Xuquan, HUANG Dong, ZHAO Ailin, LI Yucong. Well-logging evaluation index system of shale oil and gas reservoir of Da'anzhai member in central Sichuan Basin [J]. Lithologic Reservoirs, 2021, 33(3): 129-137.
[12] YANG Fanfan, YAO Zongquan, YANG Fan, DELECHIATI Ganatayi, ZHANG Lei, CAO Tianru. Petrophysical facies of Triassic Baikouquan Formation in northern Mahu Sag,Junggar Basin [J]. Lithologic Reservoirs, 2021, 33(1): 99-108.
[13] ZHANG Yan, GAO Shichen, MENG Wanying, CHENG Yuhong, JIANG Sisi. Uncertainty analysis in AVO forward modeling for tight sandstone reservoirs [J]. Lithologic Reservoirs, 2020, 32(6): 120-128.
[14] YUAN Bochao, XIAO Wenhua, WEI Haoyuan, ZHANG Nan, DENG Yilin, ZHANG Guangwei. Characteristics and controlling factors of glutenite reservoir of Cretaceous Xiagou Formation in Ya' erxia area, Jiuquan Basin [J]. Lithologic Reservoirs, 2018, 30(3): 61-70.
[15] Wei Duan, Gao Zhiqian, Meng Miaomiao,Yang Xiaoqun, Wang Jingbin,Wang Shanshan. High-precision sequence division and sedimentary model of Yingshan Formation in Tahe area [J]. Lithologic Reservoirs, 2016, 28(6): 68-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Qinlian, ZHENG Rongcai, XIAO Ling,WANG Chengyu, NIU Xiaobing. Influencing factors and characteristics of Chang 6 reservoir in Wuqi area, Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(4): 45 -50 .
[2] WANG Dongqi, YIN Daiyin. Empirical formulas of relative permeability curve of water drive reservoirs[J]. Lithologic Reservoirs, 2017, 29(3): 159 -164 .
[3] LI Yun, SHI Zhiqiang. Study on fluid inclusion of tight sandstone reservoir of Upper Triassic Xujiahe Formation in central Sichuan Basin[J]. Lithologic Reservoirs, 2008, 20(1): 27 -32 .
[4] JIANG Ren, FAN Tailiang, XU Shouli. Concept and techniques of seismic geomorphology[J]. Lithologic Reservoirs, 2008, 20(1): 33 -38 .
[5] ZOU Mingliang, HUANG Sijing, HU Zuowei, FENG Wenli, LIU Haoniannian. The origin of carbonate cements and the influence on reservoir quality of Pinghu Formation in Xihu Sag, East China Sea[J]. Lithologic Reservoirs, 2008, 20(1): 47 -52 .
[6] WANG Bingjie, HE Sheng, NI June, FANG Du. Activity analysis of main faults in Qianquan area, Banqiao Sag[J]. Lithologic Reservoirs, 2008, 20(1): 75 -82 .
[7] CHEN Zhenbiao, ZHANG Chaomo, ZHANG Zhansong, LING Husong, SUN Baodian. Using NMR T2 spectrum distribution to study fractal nature of pore structure[J]. Lithologic Reservoirs, 2008, 20(1): 105 -110 .
[8] ZHANG Houfu, XU Zhaohui. Discussion on stratigraphic-lithologic reservoirs exploration in the aspect of the research history of reservoirs[J]. Lithologic Reservoirs, 2008, 20(1): 114 -123 .
[9] ZHANG Xia. Cultivation of exploration creativity[J]. Lithologic Reservoirs, 2007, 19(1): 16 -20 .
[10] YANG Wuyang, YANG Wencai, LIU Quanxin, WANG Xiwen. 3D frequency and space domain amplitude-preserved migration with viscoelastic wave equations[J]. Lithologic Reservoirs, 2007, 19(1): 86 -91 .
TRENDMD: